AUTOMATION IN MODEL SHARING AREA FOR ENGINE ECU PROJECTS
Model Sharing Automation

Problem Statement

➢ Model based development approach is widely used across Automotive OEMs and suppliers to exchange software modules. In Bosch we receive SIMULINK models from OEM and need to generate code and validate software against the OEM models.

➢ Challenges during Model Sharing
 ➢ Adaptation of the Models for Code generation
 ➢ Validation of the generated code against the OEM Model

➢ Our Automation tool chain based on MATLAB and Jenkins will address above problems to perform the code generation and validation in an efficient way
Model Sharing Automation

SW Sharing: Code sharing and Model sharing

➢ “Software Sharing” is the notion that is typically being used to describe several business models by which OEM’s, automotive suppliers or software engineering companies request or allow the use of software modules. (Source: C/IPL)

Base Model – Code sharing

- Characteristics
 - SW sharing – base model
 - OEM delivers SW in a RB system
 - Integration done by RB
 - Typically based on RB architecture

CommDev – Model Sharing

- Characteristics
 - SW sharing – CommDev
 - OEM delivers Spec/Models
 - Functional responsibility at OEM side
 - Adapt different name spaces by CIL

The OEM focuses on Physical Model and Simulation. A model is delivered.

The supplier is in charge of the Industrialisation of the generated code based on the model.

OEM Motivation
Model Sharing Automation

Workflow: Code and Test case generation

- Config files
- OEM spec
- SuT model

ModelSetup

- Config files
- OEM spec
- SuT model

- Code
- Pavast

- SCM

- Incremental Build

- SCM

- PVER already compiled

- SCM

- PVER with new FC files

- SCM

- Specific headers + specific library files

- SCM

- SCC assessment

- SCM

- fci_spec.zip

- SCM

- fci_report.zip

- SCM

- TC .mat
- dcm

- TC raw
- rsi

- SCM

- Add range, resolution

- SCM

- Raw .rsi
- .csv

- SCM

- Signal Builder

- Reactis

- Reactis

- User Guided TC

- SCM

- STIG

- SCM

- R RS

- SCM

- STIG

- SCM

- SEDGE

- SCM

- PVER already compiled

- SCM

- PVER with new FC files

- SCM

- Specific headers + specific library files

- SCM

- SCC assessment

- SCM

- fci_spec.zip

- SCM

- fci_report.zip

- SCM

- TC .mat
- dcm

- TC raw
- rsi
Model Sharing Automation

OEM Inputs

- Simulink Model (*.mdl or *.slx)
- Calibration file (*.m) – Calibration information
- Data Dictionary (*.xls/*.xlsx or *.xml or *.m)
 - Interface Name
 - Data Type
 - Range
 - Resolution
 - Unit
 - Dimension
Model Sharing Automation

Model Setup

- Automation tool to generate code and test cases
- Developed using m-Scripts (MATLAB)
- Simulink and Bosch AddOns used in the background
- REACTIS is used to generate Test cases
- Configured to Run on specific Jenkins machines (With MATLAB installation)
- Code generation of multiple specs supported in parallel
- Multiple Jobs can be triggered on Jenkins machine
Model Sharing Automation

Summary of Model Setup steps

- Creation of Codegen and Test model with proper subsystem structure
- Data Dictionary and Library management (CWO/SLDD, Library replacements)
- Code generation and Post processing (MASST, Add Info to c and Interfaces files)
- Documentation Generation (Pictures, Docu Support, Web view)
- Test Model & Test Case (REACTIS) creation
- Log Creation (html)
Model Sharing Automation

Back-2-back validation workflow

- Automations achieved
 - Execution of signal builder test cases to generate cumulative model coverage report
 - Export of signal builder test cases and calibration
 - Invocation of DLL generation from MATLAB
 - Import of Test cases and calibrations to TPT
 - Execution of TPT test case to generate report and code coverage
Model Sharing Automation

Tomorrow’s Process
Demo, Q&A?
Model Sharing Automation

Cloud Words

Guidelines SCM Libraries Implementation
SLDD MatLab Simulink

Specs Cloud C.I. Jenkins

MatLab Apps MASST Tools

Social Coding Servers Licences

ModelSetup AddOn Automation

Post-Processing