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Why MATLAB for Artificial Intelligence?
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Artificial Intelligence

Development of computer systems to perform tasks that normally
require human intelligence
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Machine Learning and Deep Learning
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Machine Learning and Deep Learning

[ Machine Learning }

4 )

Unsupervised

Learning
[No Labeled Data]

- J

-

Supervised Learning
[Labeled Data]

~

Vs

Clustering

g

N

J

r

.

Classification }[ Regression

J

4\ MathWorks



Machine Learning and Deep Learning
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Machine Learning and Deep Learning
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feature extraction

Deep learning typically does not

involve feature extraction
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Deep Learning

« Subset of machine learning with automatic feature extraction
— Learns features and tasks directly from data

— More Data = better model

Deep Learning

Machine ,
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Deep Learning Uses a Neural Network Architecture
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Deep Learning Datatypes

shalt

sight

gentle

oooooo

where
state fch_;e eve Since _
nt | th

Meaven

cannot

aaaaa )

these ona nge . WoOr th s

happy
brightthings sssss though better  giner =

praise - Whlc:ha'One
ssssssssss “ black d thlnk

\\\\\
sssssss

Shal

sssss

nothing be|ng Wo

pirit
thoughts youth

ﬁrst

= which thlrgfe”"fd"‘“

thought night

rl
bea uty truth the

S I‘I!OQWHJ d whose
h e a rt friend

love's

sweet might -

verse Time's

uld beauty's e

aaaaa
thing

4\ MathWorks

Signal

Text

12



4\ MathWorks

Deep Learning Workflow

Prepare Data Train Model Deploy

O Data access and

A : Model design, Multiplatform code
preprocessing

Hyperparameter generation (CPU, GPU)
tuning

@ Model exchange @ Edge deployment
ALl

)" Ground truth labeling

across frameworks

Hardware- Enterprise
accelerated training Deployment
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Why MATLAB for A.l. Tasks?

Increased productivity with interactive tools )

(Generate simulation data for complex models and systems)

Ease of deployment and scaling to various platforms >

Full A.l. workflows that cannot be easily
replicated by other toolchains

14
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Why MATLAB for A.l. Tasks?

< Increased productivity with interactive tools >

Labeling < Training > <Exl\(/|:?12ﬁlge>

Full A.l. workflows that cannot be easily
replicated by other toolchains
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Labeling for deep learning Is repetitive,
tedious, and time-consuming...

but necessary
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4\ Ground Truth Labeler
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Signal Labeling — annotate signals with labels/sublabels, export to workspace for training

LABEL DISPLAY TIME e
Point A Description Value W
() Edit AL import & Accept
Mame: TrillPeaks Trill peaks 3
Add [ Delete @ Export Label [i] Delet= | Save Cancel
Definition Parent Name: TrilRegions ) Restore Value = Labels
-
LABEL DEFINITION SELECTED DEFINITION SET VALUE CLOSE a

Label Definitions
WhaleType W whale1 B whale?

DEfI ne [l MoanRsgions

~ [l TrilRegions

L ab el S A\ TrilPeaks

Labeled Signal Set

Name Flot Value Location (Min) Location (Max)
- whalel [ ]
WhaleType blue
« MoanRegions
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~ TrillRegions
- O true 10.91475 13.152470... T
~ TrilPeaks WhaleType
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O 2 11.88 I blue
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User Story — Veoneer (Autoliv)

Automotive

— Software and hardware for active safety,
autonomous driving, occupant protection,
and brake control

Building radar sensor — check

accuracy using LIDAR-based
verification

Human analyzes hours of recorded
data

Used MATLAB to semi-automate
labeling and tracking of 3D LIDAR
point clouds.
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Manual Labeling for 25 events took over 20 minutes.
After full automation with MATLAB'’s tools, it took 5 minutes
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Why MATLAB for A.l. Tasks?

< Increased productivity with interactive tools >

<Labeling> <Exl\(ﬂzﬁgﬁlge>

Full A.l. workflows that cannot be easily
replicated by other toolchains
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4\ Deep Network Designer

DESIGHER

2 Mg Import pre-trained model as starting point

HNumber of connections 0

E clippedReluLayer Input type None

m tanhLayer Output type None
E eluLayer

NORMALIZATION AND UTILIT'

E dropoutLayer
E batchNormalizationLayer

crossChannelNormalizationLayer

crop2dLayer

POOLING

E averagePooling2dLayer

ﬁ averagePooling3dLayer

E maxPooling2dLayer
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E maxUnpooling2dLayer

ﬂ maxPooling3dLayer
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Import Pre-trained Models for Transfer Learning

(Inceptlon v3> ( ResNet-101 ) ( VGG-16 > .
( Inceptlon->

ResNet-v2

Places365- . .
(GoogLeNet) (I\/IoblleNet-v2> ( Xception >
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Why MATLAB for A.l. Tasks?

< Increased productivity with interactive tools >

< Labeling > < Training > Exl\(/l:ﬁgﬁlge

Full A.l. workflows that cannot be easily
replicated by other toolchains
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Model Exchange with MATLAB

(PyTOI’Ch ) Keras-

( Caffe? )\ | Tenscirflow

( MXNet ><——> ONNX 4—><MATLAB>
Open )xréjral Nrtwork Exchange Y

(Core ML)
( CNTK ) () Caffe
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Why MATLAB for A.l. Tasks?

Increased productivity with interactive tools )

Generate simulation data for complex models and systems>

YYS

Ease of deployment and scaling to various platforms >

Full A.l. workflows that cannot be easily
replicated by other toolchains
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Why MATLAB for A.l. Tasks?

(Generate simulation data for complex models and systems>

Reinforcement
Learning

Full A.l. workflows that cannot be easily
replicated by other toolchains

30



4\ MathWorks

Reinforcement Learning vs Machine Learning vs Deep Learning
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Supervised learning typically involves
feature extraction

Deep learning typically simplifies
feature extraction
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Reinforcement Learning vs Machine Learning vs Deep Learning
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What is Reinforcement Learning?

«  What is Reinforcement
Learning?

— Type of machine learning
that trains an ‘agent’
through repeated
Interactions with an
environment

= How does it work?

— Through a trial & error
process that uses a reward
system to maximize
success

File Explorer Simulation
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e x
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Reinforcement Learning enables the use of Deep Learning for
Controls and Decision Making Applications

Controls

Robotics

A.I. Gameplay

Autonomous driving
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How Does Reinforcement Learning Work?
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A Practical Example of Reinforcement Learning
Training a Self-Driving Car

STATE AGENT ACTION - Vehicle’s computer learns how to drive...
(agent)

using sensor readings from LIDAR, cameras,...
(state)

that represent road conditions, vehicle position,...
(environment)

= by generating steering, braking, throttle commands,...
REWARD (action)

to avoid collisions and lane deviation...
(reward).

ENVIRONMENT

The goal of Reinforcement learning is for the agent to find an optimal algorithm for

performing a task
36
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Deep Networks are commonly found in the agent, because
they can model complex problems.

VRN

Turn left
Turn right
Brake
Accelerate
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Reinforcement Learning Workflow

Prepare Data

O Data access and
N\ preprocessing

)" Ground truth labeling

Simulink -
generate data for
dynamic systems

(planes, cars,
robots, etc.)

Train Model

Reinforcement learning

ot

om0

o

Training agent to
perform task

Developing reward
system to optimize
performance

Deployment

. Multiplatform code
M generation (CPU,
= &pU)

/7 Edge deployment

C5C3  Enterprise
Deployment
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Why MATLAB and Simulink for Reinforcement Learning?

Virtual models allow you to simulate conditions
hard to emulate in the real world.

file £ View bpedt Toch  Dekiop  Window  Help -|
Dagdda @ 08 o3

Binary, Occupancy Grid
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Using MATLAB and Simulink for Reinforcement Learning

« Reinforcement learning Is a

¥ ret_helico - Simulink - O X
dynamic process —— e E- e 4@b s [ m- 0
u_h;mrctm
- - - & Roll-off fiters
: Dec-|S|on. makl.ng pro.bler.ns A %TL
— Financial trading, calibration, etc. oo o gt | S -
= Controls-based problems A | g
L ela L
— Lane-keep assist, adaptive cruise ) | f |
control, robotics, etc. 3“%
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Why MATLAB for A.l. Tasks?

Increased productivity with interactive tools )

(Generate simulation data for complex models and systems>

Ease of deployment and scaling to various platforms >

Full A.l. workflows that cannot be easily
replicated by other toolchains
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Why MATLAB for A.l. Tasks?

Increased productivity with interactive tools )

(Generate simulation data for complex models and systems
{ CUOUT \ [ ErnmoeEquUcU \ { It

Ease of deployment and scaling to various platforms )

Full A.l. workflows that cannot be easily
replicated by other toolchains
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Embedded Devices — Automatic Code Generation

4
TR N
MATLAB Code Auto-generated Deployment
Code Target

(C/C++/CUDA)
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Deploying Deep Learning Models for Inference

B} ) Intel
(lntel) MKL-DNN
Library

& _ NVIDIA
Prcf)%lduecrts . Tegzgrl\IT NT "
NVIDIA. Libraries

Deep Learning
ARM
Compute
Library

Networks
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With GPU Coder, MATLAB is fast

Single Image Inference (Titan V, Linux)

> ' R2019a

300 r )
GPU Coder Is faster

250 | ] than TensorFlow,

0 MXNet and Pytorch
0 200 |
v
%150 B TensorFlow
= B MXNet

100 |

m GPU Coder
50 | m PyTorch
0

ResNet-50 VGG-16 Inception-V3
MmIln,glel® Xeon® CPU 3.6 GHz - NVIDIA libraries: CUDA10 - cuDNN 7 - Frameworks: TensorFlow 1.13.0, MXNet 1.4.0 PyTorch 1.0.0 46
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TensorRT speeds up inference for TensorFlow and GPU Coder

400
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Single Image Inference with ResNet-50 (Titan V)

- R2019a

cuDNN

TensorRT

TensorFlow
GPU Coder
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Even higher Speeds with Integer Arithmetic (int8)
ResNet-SIU Inferencel(Titan V) |

R20] QICI _I TensorFlow (int8)

3500

3000

2500

M
o
o
o

1500

Images/Sec

TensorFlow + TensorRT
1000

500

. . . ! Batch Size

1 2 4 8 16 32
Intel® Xeon® CPU 3.6 GHz - NVIDIA libraries: CUDA10 - cuDNN 7 — Tensor RT 5.0.2.6. Frameworks: TensorFlow 1.13.0, MXNet 1.4.0 PyTorch 1.0.048




Enterprise Deployment

>> parpool (parcluster (‘HPC1’) ,100) ;

>> parfor i = 1:3000,

>> c(:,1) = eig(rand, 1000);

>> end

| | AL LU

D

Cloud

-1

GPU

=

““ = |---’ %%4E&'&°"4\
PEN = " il m
MATLAB 2
+ [ MATLAB Parallel
Parallel Computing Server
Toolbox

Multicore
CPU

4\ MathWorks

Run thousands of simulations in parallel with MATLAB Parallel Server to save hours of

training time.
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Enterprise Deployment

Develop

—

MATLAB

MATLAB

Compiler SDK

| boe Notines |
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Deployment to the cloud with MATLAB Compiler and MATLAB Production Server
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Musashi Seimitsu Industry Co.,Ltd.
Detect Abnormalities in Automotive Parts

Automated visual inspection of 1.3 million
bevel gear per month

MATLAB use in project:
Preprocessing of captured images
Image annotation for training
Deep learning based analysis

— Various transfer learning methods
(Combinations of CNN models, Classifiers)

— Estimation of defect area using Class Activation Map
(CAM)

— Abnormality/defect classification

Deployment to NVIDIA Jetson using GPU Coder

4\ MathWorks
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Why MATLAB for A.l. Tasks?

Increased productivity with interactive tools )

(Generate simulation data for complex models and systems)

Ease of deployment and scaling to various platforms >

Full A.l. workflows that cannot be easily
replicated by other toolchains
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