MATLAB EXPO 2019

Design and Verification of Mixed-Signal and SerDes Systems

Aniruddha Dayalu
Principal Application Engineer
Analog/Mixed-Signal and Signal Integrity
Agenda

- Motivation
- System Level Design of Mixed-Signal and SerDes Blocks
- Linking System Design to Circuit Design
- Conclusion
Mixed-Signal Integrated Circuits Require New Methodologies!

- Analog and digital circuits integrated on the same chip
- Large analog + large digital
 - ADC/DAC, PLL, Power supplies, MEMs, Sensors, …
 (control systems based on feedback loops + digital signal processing)
- Analog content in shipped semiconductor is growing
Challenges in ASIC Workflows

Design
- Limited design abstractions
- Design trade-offs difficult
- Slow design iterations

Verification
- Specification isolated from verification
- Multiple, disconnected tools
- Disconnected teams

Diagram
- Specification
 - Implementation
 - Software
 - C/C++
 - Digital
 - HDL
 - Analog
 - SPICE
 - Integration
 - Software
 - Digital Hardware
 - Analog Hardware
 - Test & Verification
Agenda

- Motivation
- System Level Design of Mixed-Signal and SerDes Blocks
- Linking System Design to Circuit Design
- Conclusion
Mixed-Signal and SerDes system design

R2019a

Mixed-Signal Blockset

SerDes Toolbox

MATLAB EXPO 2019
Phase-Locked Loop

- Feedback control system
 - Which generates a signal with a fixed relation to a reference
 - It is used for frequency synthesis, synchronization

- Focus on loop filter system design
 - Design should target minimal phase noise
 - Start with a PLL behavioral model
 - Use circuit level verification to build better models for CP
 - Loop filter final design

![PLL Phase Noise Calculations]

Closed loop analysis using MATLAB

\[F_{OUT} = N \times F_{REF} \]
Behavioral Model of Phase-Locked Loop

2.4GHz PLL - Example of Loop Filter Design

Copyright 2011-2019 The MathWorks, Inc.

MATLAB EXPO 2019
PLL Going Beyond Behavioral – Using Analog Co-simulation

2.4GHz PLL - Example of Loop Filter Design

REF
Reference oscillator

PFD
Phase/frequency detector

VCO

DIV
Divide by N

Freq = 2440 MHz
RF = Spectrum Analyzer with Image Reject

MATLAB EXPO 2019
Fitting of PLL Model With Circuit Non-idealities

2.4GHz PLL - Example of Loop Filter Design

- REF: Reference oscillator
- PFD: Phase/frequency detector
- CP: Charge Pump
- LPF: Loop Filter
- VCO: Voltage-Controlled Oscillator
- DIV: Divide by N

Parameters:
- Configuration: Impairments
- Enable impairments
- Current impairments
- Current imbalance (A): 5e-9
- Leakage current (A): 2.3e-8
- Timing impairments
 - Output step size calculation
 - Default
 - Advanced
 - up: Rise/fall time (s): 150e-12
 - Minimum Up propagation delay: 2.4e+02ps
 - Propagation delay (s): 3e-9
 - down: Rise/fall time (s): 150e-12
 - Minimum Down propagation delay: 2.4e+02ps
 - Propagation delay (s): 1e-9

RF Spectrum Analyzer (Image Reject):
- Fc = 2440 MHz
- BW = 160 MHz

MATLAB EXPO 2019
SerDes System is a Specialized Mixed Signal Circuit

Parallel interface

TX

RX

clock

Serial interface

TX

RX

Serializer

Deserializer

clock

SerDes of the PAST

Transmit Equalization

System Interconnect

Receive Equalization

Data Recovery

Clock Recovery

Channel

Present day SerDes

MATLAB EXPO 2019
SerDes Designer app: No Need to be a SerDes Expert

- Design and analyze SerDes systems including transmitters and receivers with arbitrary configuration
- Use parameterized building blocks
- Perform statistical analysis: eye diagram, BER, bathtub, pulse response...
SerDes Design: Where to Start?

- Add SerDes components
- Plot analysis results
- Export to:
 - MATLAB
 - Simulink
 - IBIS-AMI

Component specifications

- Modulation
- Sample rate
- Signaling

High-speed link

MATLAB EXPO 2
SerDes Top Down Design

- Create a MATLAB script for automation and design space exploration
- Export to Simulink models for time-domain simulation
- Create dual IBIS-AMI models
SerDes Toolbox: Simulink Models

- Develop adaptive equalizers using white-box models such as DFE, CTLE, AGC, and CDR
- Use parametrized blocks and algorithms for single-ended and differential signals
- Generate PRBS and custom stimulus patterns supporting PAM4 and NRZ modulation
SerDes Simulation and Architecture Exploration

Channel modeling

Simulate and customize adaptive equalizers

Customize AMI parameters

White-box (customizable) models

NOTE: The step or time domain adaptation of the CTE must be done in an exterior block.
Agenda

- Motivation
- System Level Design of Mixed-Signal and SerDes Blocks
- Linking System Design to Circuit Design
- Conclusion
Cadence Integration

- Co-simulation
 - Analog: between Simulink and AMS Designer
 - Digital: between MATLAB/Simulink and Incisive

- Code-generation
 - Synthesizable: VHDL or Verilog
 - Behavioral: real-number SystemVerilog (DPI-C)

- Data post-processing
 - File: import data files in MATLAB for post-processing
 - ADE Explorer & Assembler: Invoke MATLAB functions

Debugging
Validation of behavioral models

IC Implementation
Testbench generation

Result analysis (statistical)
Model fitting

MATLAB EXPO 2019
Generate SystemVerilog Module for EDA Tools

1. Make the Simulink model / MATLAB code compliant with C code generation
2. Generate C code
3. Automatically wrap the C code using the DPI-C interface (UVM Compliant Models)
4. Import, build and simulate an equivalent behavioral SystemVerilog model in your IC design tool
Benefits of C Code Generation and DPI-C Export

- Fast simulation using the native SystemVerilog API
- IC design tool independent
- Uses mature C code generation technology to provide real-number models
- Most suitable for testbench generation and IC verification (regression tests)
- Supports discrete and continuous time signals
- Supports code generation from MATLAB and Simulink
Endorsed Workflow by STARC

A Next-Generation Workflow for System-Level Design of Mixed-Signal Integrated Circuits

By Kunihiko Tsuboi and Nobutaka Okumura, STARC

In the competitive world of mixed-signal design, project delays are deadly for profitability. Design cycles are short, and the market moves very quickly, giving a competitive edge to any company that manages to accelerate its design process. At the Semiconductor Technology Academic Research Center (STARC), we have been given the mission of finding a way to cut design time in half and eliminate costly respins for our supporting companies. We have achieved this goal with our new system-level design flow.

Our system-level design flow (which we call STARCAD-AMS) starts with rapid and extensive behavioral modeling in Simulink®. Once we have a design that works at the system level, we generate C code from our Simulink models and import it into Cadence® Virtuoso®, where it is simulated using AMS Designer. We use our C code to verify the correctness of our circuit-level designs. We have benchmarked our STARCAD-AMS flow using a sigma-delta analog-to-digital converter (ADC) design. Our results show that design time is cut in half.

DPI-C Customer Successes – NXP Semiconductors, India

- Leveraged DPI-C to perform advanced verification using MATLAB functions
- Moved to a more efficient verification
- Sign off tool leveraged due to UVM compliance of DPI-C model generation

Verification Metrics

Conventional
- Sample by Sample comparison
- Attenuation

DPI-C
- Signal Reconstruction
- SNR
- PSD
- THD
- Attenuation

(*) Verifying hardware implementation of automotive radar signal processing with MATLAB, Sainath K, Shashank V
Agenda

- Motivation
- System Level Design of Mixed-Signal and SerDes Blocks
- Linking System Design to Circuit Design
- Conclusion and Next Steps
Conclusion

- Rapid system level design of mixed-signal IC’s using architectures or from building blocks
- Build SerDes systems like never before using SerDes designer app
- Perform advanced analysis using measurement test benches and visualization capabilities
- Link with IC design tools to model implementation impairments and reuse testbenches
- Deliver DPI-C compliant SV models and IBIS-AMI to customers (internal and external)
Call to Action – MathWorks Resources

- **Mixed Signal** and **SerDes** Product Pages
- **User stories**

Allegro MicroSystems Reduces Anti-Lock Braking System Sensor Development Time

"Using MathWorks tools, we identified the best algorithm choice. Because the model ran much faster than our circuit simulator, we caught implementation errors much quicker and shortened our time to market."

— Cory Voisine, Allegro MicroSystems

Fujitsu Develops and Tests State-of-the-Art 40 Gbps Optical Transponder

"By including circuit-level simulation results in our Simulink models we can simulate millions of cycles with the accuracy needed to account for noise and other transient effects. Simulink is the only tool fast enough for our jitter-tolerance simulations."

— William Walker, Fujitsu Laboratories of America
System Design and Modeling with Simulink

This three-day course uses basic modeling techniques and tools to demonstrate how to develop Simulink block diagrams for signal processing applications.

Topics include:

- Modeling single-channel and multi-channel discrete dynamic systems
- Implementing sample-based and frame-based processing
- Modeling mixed-signal (hybrid) systems
- Developing custom blocks and libraries
- Performing spectral analysis with Simulink
- Integrating filter designs into Simulink
- Modeling multirate systems
- Incorporating external code
Please provide feedback for this block of sessions

- Scan this QR Code or log onto link below (link also sent to your phone and email)
- Enter the registration id number displayed on your badge
- Provide feedback for this session

Email: Aniruddha.Dayalu@mathworks.in
LinkedIn: https://www.linkedin.com/in/aniruddhadayalu