DEVELOPMENT OF MULTI-TARGET TRACKER FOR SURVEILLANCE RADAR USING MATLAB

SRIHARI BR - DEPUTY MANAGER
ABHISHEK T - DEPUTY ENGINEER
D&E-CSS-NS2
BHARAT ELECTRONICS LIMITED
25-04-2019
Outline

❖ Introduction about BEL
❖ Requirements
❖ Approach
 ➢ Tools used: MATLAB Sensor Fusion Tracking Toolbox (SFTT), CODER
 ➢ Method employed: Development Phase I - IV
❖ Results
 ➢ Comparison with different approaches
 ➢ Comparison with Original Equipment Manufacture (OEM) system
❖ Key takeaways
❖ Looking forward for...
ABOUT BEL

❖ BEL is PSUs under the Ministry of Defence, India.
❖ BEL design, develop and manufactures a wide range of products in the following fields
 ➢ Radars
 ➢ Electronic Warfare System
 ➢ Defence Communication
 ➢ Tank Electronics
 ➢ Opto Electronics and Semiconductors
 ➢ Missile System and Tank Electronics
 ➢ EVM and VVPAT and many more…
❖ Major customers of BEL comprise of Indian Army, Navy, Air Force, Paramilitary, Coast Guard and many more.
STC : Sensitivity Time Control
FTC : Fast Time Control
CFAR : Constant False Alarm Rate
Development of field deployable multi-target tracking module using Sensor Fusion Tracking Toolbox and MATLAB coder.

Evaluation of performance in Coastal Surveillance scenario.

CHALLENGES

- Small target tracking amidst sea clutter
- Reduced false track initiation in high clutter conditions
- Faster track initiation & better maintenance
- Attribute extraction for target classification
- Deployable code generation without dependencies on external libraries
APPROACH

Phase-I
- Evaluating SFTT in MATLAB with recorded data
- Comparison of result with recorded track reports

Phase-II
- Using multiple track lines
- Using covariance fusion

Phase-III
- C/C++ code generation
- Wrapper function for interface with SP chain

Phase-IV
- Custom enhancements in C++ code
- Knowledge based tracking
DEVELOPMENT OF MULTI_TARGET_TRACKER FOR CSS
- TIMELINE

PHASE-IV

PHASE-III

PHASE-II

PHASE-I

Dec-18 Jan-19 Feb-19 Mar-19 Apr-19 May-19
DEVELOPMENT PHASE - I

- Evaluating performance of trackerGNN and trackerTOMHT modules in Matlab-SFTT with field recorded data(detections).
 - Tuning tracker initiation, filter and maintenance parameters
 - Evaluating performance w.r.t track kinematics accuracy and maintenance, by changing assignment methods, cost matrix computation, etc.

```
tracker = trackerGNN('FilterInitializationFcn', ... @initcaekf, ... 'MaxNumTracks',1000, ... 'Assignment','Jonker-Volgenant', ... 'AssignmentThreshold',50, ... 'TrackLogic','History', ... 'DeletionThreshold',[6 8], ... 'ConfirmationThreshold',[8 10], ... 'HasCostMatrixInput',true);
```

```
tracker = trackerTOMHT('FilterInitializationFcn', ... @custcaekf, ... 'ConfirmationThreshold', 25, ... 'MaxNumSensors', 1, ... 'DeletionThreshold', -5, ... 'AssignmentThreshold',[0.5,0.7,1]*50, ... 'MaxNumHypotheses', 2, ... 'MaxNumTracks', 1000, ... 'MaxNumHypotheses', 10, ... 'NScanPruning','Hypothesis', ... 'HasCostMatrixInput',true, ... 'FalseAlarmRate',1e-5);
```
RECORDED DATA-295 SCANS

- Radar - Position
- Navigational-TL Plots
- Slow-TL-Plots
- Fast-TL-Plots
- Helicopter-TL-Plots
- Terma-Tracks

TrackID: 1304
Range: 7.1627 nmi
Bearing: 66.7725 deg
Speed: 11.444 knots
Course: 76.444 deg
RESULTS USING MATLAB SFTT-GNN MULTIOBJECT TRACKER

Bench Mark System Results

- TrackID: 3636
- Range: 2.7247 nmi
- Bearing: 78.839 deg
- Speed: 9.3103 knots
- Course: 280.5029 deg

MATLAB Results

- TrackID: 501
- Range: 2.7534 nmi
- Bearing: 79.0626 deg
- Speed: 9.1252 knots
- Course: 281.4405 deg
RESULTS USING MATLAB SFTT-TOMHT MULTIOBJECT TRACKER

Bench Mark System Results

MATLAB Results
DEVELOPMENT PHASE - II

➢ Use of **Multiple-Track Lines** for load reduction

Use of **covariance fusion** for correlating tracks from all track lines

\[
\begin{align*}
X(:,t) &= \text{confTracks}\{h\}(\text{fusionIDS}\{cTrk\}(t)).\text{State}; \\
P(:, :, t) &= \text{confTracks}\{h\}(\text{fusionIDS}\{cTrk\}(t)).\text{StateCovariance}; \\
[X\text{corr}, P\text{corr}] &= \text{fusexcov}(X, P); \quad \%\text{Cross-covariance fusion}
\end{align*}
\]
RESULTS (CONTD.)

WITHOUT COVARIANCE FUSION

WITH COVARIANCE FUSION

TrackID: 3905
Range: 8.3033 nmi
Bearing: 77.9394 deg
Speed: 6.4009 knots
Course: 63.7301 deg

TrackID: 97
Range: 8.3879 nmi
Bearing: 77.6319 deg
Speed: 9.2926 knots
Course: 28.2795 deg
Track is maintained even after long run (Track ID is maintained)

TrackID: 501
Range: 2.3403 nmi
Bearing: 70.3619 deg
Speed: 8.0639 knots
Course: 284.9019 deg

TrackID: 501
Range: 3.3436 nmi
Bearing: 83.3629 deg
Speed: 9.0641 knots
Course: 294.0722 deg
DEVELOPMENT PHASE - III

Deployable C++ code generation using MATLAB Coder

```matlab
load detectiondata.mat
compInputs = {detections simTime};
tracker_kernel(compInputs{1},simTime);
codegen tracker_kernel -args compInputs;

function [confirmedTracks, numTracks,~] = tracker_kernel.m(detections,time)
    persistent tracker
    if isempty(tracker)
        tracker = trackerTOMHT('FilterInitializationFcn',
            @initcaEKF,...
            'MaxNumHypotheses', 5,...
            'MaxNumTracks', 1000,...
            'MaxNumSensors', 1,...
            'NScanPruning', 'Hypothesis');
    end
    [confirmedTracks,~,~,information] = tracker(detections,time);
    numTracks = tracker.NumTracks;
end
```

Wrapper function is developed for interfacing the C++ Code with the signal processor chain.
CUSTOM ENHANCEMENTS in C++ code for introducing KNOWLEDGE based tracking
methods such as:

- Utilization of zones and map information
- Using plot attributes such as range spread, azimuth spread and plot amplitude for association
- Adaptation in Confirmation, Association and Deletion Thresholds w.r.t variable clutter density
- Optimizing memory allocations and introducing parallel processing architecture for multiple track lines with correlation.
PLOT ATTRIBUTES

- Plot
- Plot azimuth width
- Plot centre
- Digital echo (Strength indicated by shading)
- Radials
- Plot range width
STATUSF

Phase-I
- Evaluating SFFT in MATLAB with Recorded Data
- Comparison of result with recorded track reports

Phase-II
- Using multiple track lines
- Using Covariance Fusion

Phase-III
- C/C++ Code Generation
- Wrapper function for interface with SP chain

Phase-IV
- Custom enhancements in C++ code
- Knowledge-based tracking

In Progress
BENEFITS OF USING MATLAB

❖ Object Oriented Approach
❖ The ability to auto-generate C code, using MATLAB Coder
❖ Wide variety of readily available packages and Toolbox
❖ Complex Tracker Algorithms are available out of the box.
❖ Easy to prove and evaluate the concepts
❖ Saves money and time
❖ User friendly
KEY TAKE AWAYS

- Using MATLAB SFTT for evaluating Multi-Target Tracker and Estimation Filters
- Using cross-covariance fusion for track-to-track correlation
- Using MATLAB CODER for deployable C++ code generation
- Employing Knowledge based tracking methods for improving track maintenance
LOOKING FORWARD FOR

- Multi-sensor data fusion (viz. Radar, AIS etc)
- Attribute based Tracking and data fusion
- Target classification
- Deployable code generation for these modules
“Looking forward to a long and fruitful association”

THANK YOU