MATLAB EXPO 2016
Get More From Your Data with Data Analytics

Francesca Perino
What do we have to work with?
Buildings have thermodynamic properties

\[
\frac{\partial u}{\partial t} - \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = 0
\]
Temperatures change
Electricity demand varies
Humans have comfort bounds
\[\frac{\partial u}{\partial t} - \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = 0 \]
BuildingIQ Develops Proactive Algorithms for HVAC Energy Optimization in Large-Scale Buildings

Office buildings, hospitals, and other large-scale commercial buildings account for about 30% of the energy consumed worldwide. The heating, ventilation, and air-conditioning (HVAC) systems in these buildings are often inefficient because they do not take into account changing weather patterns, variable energy costs, or the building’s thermal properties.

BuildingIQ has developed Predictive Energy Optimization™ (PEO), a cloud-based software platform that reduces HVAC energy consumption by 10–25% during normal operation. PEO was developed in cooperation with the Commonwealth Scientific and Industrial Research Organisation (CSIRO), HVAC pressure sensors, as well as weather and energy cost data. A single building often produces billions of data points, and the scientists and engineers needed tools for efficiently filtering, processing, and visualizing this data.

To run their optimization algorithms, the scientists and engineers had to create an accurate mathematical model of a building’s thermal and power dynamics. The algorithms would use this calculated model to run constrained optimizations that maintained occupant comfort while minimizing energy costs.

BuildingIQ needed a way to rapidly develop mathematical models, test optimization algorithms, and visualize the results. To meet this need, BuildingIQ deployed MATLAB® on their data center and on premise to improve the performance of their PEO system.

Large-scale commercial buildings can reduce energy costs by 10–25% with BuildingIQ’s energy optimization system.
Traits of Data Analytics applications

BuildingIQ Develops Proactive Algorithms for HVAC Energy Optimization in Large-Scale Buildings

1. Diverse and/or Big Data
Why MATLAB?

1. **Analytics that increasingly require both business and engineering data**

 DATA
 - Engineering, Scientific, and Field
 - Business and Transactional

2. **Enable Domain Experts to be Data Scientists**

3. **Develop embedded systems with analytics powered functionality**

4. **Develop analytics to run on both enterprise and embedded platforms**

 Embedded Systems
 - Car
 - Plane

 Business Systems
 - Database

MATLAB EXPO 2016
Why MATLAB?

1. Analytics that increasingly require **both business and engineering data**

2. Enable **Domain Experts to be Data Scientists**

3. Develop **embedded systems** with analytics powered functionality

4. Develop analytics to run on both enterprise and embedded platforms

DATA
- Engineering, Scientific, and Field
- Business and Transactional

Smarter Embedded Systems

Business Systems

MATLAB EXPO 2016
“No matter what industry our client is in, and **no matter what data they ask us to analyze—text, audio, images, or video**—MATLAB enables us to provide clear results faster.”

Dr. G Subrahmanya VRK Rao, Cognizant

Business and Engineering Data

Business and Transactional Data

<table>
<thead>
<tr>
<th>Repositories</th>
<th>Web Sources</th>
<th>File I/O</th>
<th>Communication Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Databases (SQL)</td>
<td>HTML, Mapping, Financial datafeeds</td>
<td>Text, Spreadsheet, XML, CDF/HDF, Image, Audio, Video, Geospatial</td>
<td>CAN (Controller Area Network)</td>
</tr>
<tr>
<td>NoSQL</td>
<td>RESTful</td>
<td></td>
<td>DDS (Data Distribution Service)</td>
</tr>
<tr>
<td>Hadoop</td>
<td>JSON</td>
<td></td>
<td>OPC (OLE for Process Control)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Real-Time Sources</th>
<th></th>
<th></th>
<th>XCP (eXplicit Control Protocol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameras</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machines (embedded systems)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATLAB EXPO 2016

Accessing Data
Datastore

HDFS

Node
Data
Map
Reduce

Node
Data
Map
Reduce

Node
Data
Map
Reduce

Node
Data
Map
Reduce
Table
Preprocessing Data

Read in engine data

The data used is the sensor readings taken off of the equipment. Maintenance was done after 125 cycles of use, regardless of whether the equipment seemed to need it or not, so we only have the first 125 cycles off of each engine. Our maintenance staff tells us that while some of them were in need of maintenance, many were fine and could have run longer before being serviced. So far no failures have occurred prior to maintenance.

```matlab
sensorData = readtable('train_FD001_Unit_1.csv', 'ReadVariableNames', true);
```

Select relevant variable names

```matlab
variableNames = {'Unit', 'Time', 'LPCOutletTemp', 'HPCOutletTemp', ...
```
Signal Processing

- cheby2
- filter
- rms
- pwelch
- periodogram
- xcov
- findpeaks
- movmean
- movstd
- ...
Image Processing

Perform image processing, analysis, visualization, and algorithm development

- Image display and exploration
- Image enhancement
- Image analysis
- Morphological operations
- Image registration
- Geometric transformation
- ROI-based processing
Feature Engineering – Extracting Information from Data

<table>
<thead>
<tr>
<th>Data type</th>
<th>Common Techniques for Deriving Features</th>
</tr>
</thead>
</table>
| **Sensor data** | • Peak analysis
 • Pulse and transition metrics
 • Spectral measurements (power, bandwidth, mean frequency, median frequency) |
| **Image and video data** | • Bag of visual words
 • HOG (Histogram of Oriented Gradients)
 • Minimum Eigenvalue algorithm
 • Local feature descriptors
 • Edge detection |
| **Transactional data** | • Decomposing timestamps into components (day, month, day of week, etc.)
 • Calculation of aggregate values |
Why MATLAB?

1. Analytics that increasingly require **both business and engineering data**

2. Enable **Domain Experts to be Data Scientists**

3. Develop **embedded systems** with analytics powered functionality

4. Develop analytics to run on **both enterprise and embedded platforms**

DATA

- Engineering, Scientific, and Field
- Business and Transactional

Smarter Embedded Systems

Business Systems
“MATLAB has helped accelerate our R&D and deployment with its robust numerical algorithms, extensive visualization and analytics tools, reliable optimization routines, support for object-oriented programming, and ability to run in the cloud with our production Java applications.”

Borislav Savkovic, BuildingIQ
Apps - Classification Learner app
Language - MATLAB Execution Engine

- Redesigned **execution engine** runs MATLAB code faster
 - All MATLAB code can be JIT compiled
 - A platform for future improvements

The examples of all FSDA functions have been monitored under R2012a, R2014b, R2015a, R2015b. Results seem to indicate that, generally, on computationally intensive mathematical/statistical function R2015b yields remarkable time improvements.
Why MATLAB?

1. Analytics that increasingly require both business and engineering data

DATA
• Engineering, Scientific, and Field
• Business and Transactional

2. Enable Domain Experts to be Data Scientists

3. Develop embedded systems with analytics powered functionality

4. Develop analytics to run on both enterprise and embedded platforms

Smarter Embedded Systems

Data Scientist

Business Systems
Smarter Embedded Systems

- RESEARCH
- REQUIREMENTS
- DESIGN
 - Environment Models
 - Physical Components
 - Algorithms
- IMPLEMENTATION
 - C, C++
 - VHDL, Verilog
 - Structured Text
 - MCU, DSP, FPGA, ASIC, PLC
- INTEGRATION
- TEST AND VERIFICATION

- Airbus
 - Battery management
- GM
 - Climate control
- Festo
 - Industrial robots
- Sonova
 - Hearing implants
- Weinmann
 - Transport ventilator
- manroland
 - Printing presses
- FLIR
 - Thermal imaging
- Daimler
 - Cruise controller
- ABB
 - Smart Grid controller
MATLAB Code Generation
C Code Generation
Why MATLAB?

1. Analytics that increasingly require both business and engineering data

2. Enable Domain Experts to be Data Scientists

3. Develop embedded systems with analytics powered functionality

4. Develop analytics to run on both enterprise and embedded platforms

DATA
- Engineering, Scientific, and Field
- Business and Transactional

Smarter Embedded Systems

Business Systems

MATLAB EXPO 2016
Where does the processing happen?

<table>
<thead>
<tr>
<th>Devices</th>
<th>Business Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibility</td>
<td>Self, Maybe Neighbors</td>
</tr>
<tr>
<td>Power</td>
<td>Battery (Low)</td>
</tr>
<tr>
<td>Processing</td>
<td>Microprocessor (Low)</td>
</tr>
<tr>
<td>Storage</td>
<td>Memory (Minimum Buffer)</td>
</tr>
<tr>
<td>Updates</td>
<td>Difficult</td>
</tr>
</tbody>
</table>
Why not transfer all the data?

1. Data privacy concerns
2. Cost of network/storage
3. Power required to transmit data from device (for wireless)
4. Response time
Splitting computation
Smart Systems: Wearable Healthcare Technology

Wearables and Apps Are Shaping the Future of Medical Care

Motion analysis sensors and apps can precisely capture, measure, or record users’ movements. These devices provide doctors, researchers, and patients with biometric data that would otherwise be difficult to collect, such as minute changes in a patient’s breathing pattern, gait, and range of motion.

However, the proliferation of these devices poses a new problem: How do you analyze data collected with wearable technology and ensure that it is being put to good use?

Figure 1: Ubiove sensors in a running test.
Deploying Algorithms to Enterprise Systems

MATLAB Compiler enables sharing MATLAB programs without integration programming

MATLAB Compiler SDK provides implementation and platform flexibility for software developers

MATLAB Production Server provides the most efficient development path for secure and scalable web and enterprise applications
Enterprise Integration – Forecasting Model
MATLAB Differentiators

1. Analytics that increasingly require **both business and engineering data**

DATA
- Engineering, Scientific, and Field
- Business and Transactional

2. Enable **Domain Experts to be Data Scientists**

3. Develop **embedded systems** with analytics powered functionality

4. Develop analytics to run on **both enterprise and embedded platforms**

Smarter Embedded Systems

Business Systems

Data Scientist

MATLAB EXPO 2016
Learn More

Data Analytics

Download a Free Data Analytics Trial of MATLAB
Download trial

Engineering and IT teams are using MATLAB to build today’s advanced Big Data Analytics systems ranging from predictive maintenance and telematics to advanced driver assistance systems and sensor analytics. Teams select MATLAB because it offers essential capabilities not found in business intelligence systems or open source languages.

Physical-world data: MATLAB has native support for sensor, image, video, telemetry, binary, and other real-time formats. Explore this data using MATLAB MapReduce functionality for Hadoop, and by connecting interfaces to ODBC/JDBC databases.

Machine learning, neural networks, statistics, and beyond: MATLAB offers a full set of statistics and machine learning functionality, plus advanced methods such as nonlinear optimization, system identification, and thousands of prebuilt algorithms for image and video processing, financial modeling, control system design.

High speed processing of large data sets. MATLAB’s numeric routines scale directly to parallel processing on clusters and cloud.