MATLAB EXPO 2018

What’s New in MATLAB and Simulink R2017b R2018a

Giuseppe Ridinò
Platform
Productivity

Getting your work done faster

Workflow
Depth

Support for your entire workflow

Application
Breadth

Products for the work you do
- Create Your Designs Faster
- Simplify Analysis
- Simulate Faster and Scale Your Work
- Collaborate
Create Your Designs Faster

MATLAB

Explore and Analyze Storm Events

Frequency of Events
Explore the frequency of various storm events and locations and the associated damage costs.

```matlab
clear
data = load('stormEvents');
data = timetable2table(data);
heed(data)
```

Visualize with a Heatmap
This is helpful in exploring patterns across categories like the events and locations.

```matlab
bigfigure;
heatmap(data,'state','weathercats');
xlabel('State');
ylabel('Storm Event');
title('Frequency of Events by Location')
```
Create Your Designs Faster

MATLAB
Create Your Designs Faster

MATLAB

Simulink (Simscape)
Create Your Designs Faster

MATLAB

Simulink (Simscape)

Stateflow
Simplify Analysis with Apps

These interactive applications automate common technical computing tasks

- Econometric Modeler app
 - Perform time series analysis, specification testing, modeling, and diagnostics

- Analog Input Recorder app
 - Acquire and visualize analog input signals

- Image Labeling app
 - Label ground truth in a collection of images
Simplify Analysis by Simulating at Wall Clock Speed

Slow down the simulation for easier model interactivity

- Especially for models controlled and monitored via Dashboard blocks and other displays
- Useful when model is connected to hardware
Scale Your Work

Use parallel computing to run multiple simulations faster

- Run multiple parallel simulations with `parsim`
- Monitor simulation status and progress in the Simulation Manager

Parallel Computing Toolbox
MATLAB Distributed Computing Server
Scale Your Work

Use tall arrays to manipulate and analyze data that is too big to fit in memory

- Use familiar MATLAB functions and syntax
- Support for hundreds of functions
- Works with Spark + Hadoop clusters
Simulate Faster

Redesigned execution engine runs MATLAB code faster

- All MATLAB code can now be JIT compiled
- MATLAB runs your code over twice as fast as it did just three years ago
- No need to change a single line of your code
- Increased speed of MATLAB startup in R2018a
Team Collaboration

Use advanced software development features to manage, test, and integrate MATLAB code

MATLAB® Test Report

Timestamp: 04-Jan-2017 13:28:06
Host: AH-509
Platform: win64
MATLAB Version: 9.1.0.441655 (R2016b)

Number of Tests: 17
Testing Time: 0.4516 seconds
Overall Result: PASSED

Overview

<table>
<thead>
<tr>
<th>Test Case</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigTests.BlackTestMethodTest</td>
<td>0.1449 seconds</td>
</tr>
<tr>
<td>BigTests.BlackOneLineTest</td>
<td>0.1241 seconds</td>
</tr>
<tr>
<td>BigTests.BlackDerricTest</td>
<td>0.1572 seconds</td>
</tr>
</tbody>
</table>

Details

<table>
<thead>
<tr>
<th>Test Case</th>
<th>Description</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>BigTests.BlackLengthTest</td>
<td>Test passed</td>
<td>0.0670 seconds</td>
</tr>
<tr>
<td>BigTests.BlackLengthTest</td>
<td>Test passed</td>
<td>0.0670 seconds</td>
</tr>
<tr>
<td>BigTests.BlackLengthTest</td>
<td>Test passed</td>
<td>0.0670 seconds</td>
</tr>
</tbody>
</table>

MATLAB EXPO 2018
Team Collaboration

Use advanced software development features to manage, test, and integrate MATLAB code

MATLAB® Test Report

Timestamp: 04-Jan-2017 13:28:06
Host: AH-SDI
Platform: win64
MATLAB Version: 9.1.0.441655 (R2016b)

Number of Tests: 17
Testing Time: 0.4516 seconds
Overall Result: PASSED

Overview

<table>
<thead>
<tr>
<th>Test Path</th>
<th>Test Duration</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>C:\Data\Test\Test.m</td>
<td>0.1469 seconds</td>
<td>Passed</td>
</tr>
<tr>
<td>C:\Data\Test\Test2.m</td>
<td>0.1242 seconds</td>
<td>Passed</td>
</tr>
<tr>
<td>C:\Data\Test\Test3.m</td>
<td>0.1372 seconds</td>
<td>Passed</td>
</tr>
</tbody>
</table>

Details

<table>
<thead>
<tr>
<th>Test Path</th>
<th>Description</th>
<th>Duration</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>C:\Data\Test\Test.m</td>
<td>Test 1 Passed</td>
<td>0.0800 seconds</td>
<td>Passed</td>
</tr>
<tr>
<td>C:\Data\Test\Test2.m</td>
<td>Test 2 Passed</td>
<td>0.0627 seconds</td>
<td>Passed</td>
</tr>
<tr>
<td>C:\Data\Test\Test3.m</td>
<td>Test 3 Passed</td>
<td>0.0344 seconds</td>
<td>Passed</td>
</tr>
</tbody>
</table>

Identify differences between model elements, Stateflow charts, and MATLAB Function blocks
- Create Your Designs Faster
- Simplify Analysis
- Simulate Faster and Scale Your Work
- Collaborate
- Deployment of MATLAB Algorithms and Applications
- Code Generation from Simulink Models
- Verification and Validation
Deploy MATLAB Algorithms and Applications

- Access Data
 - Sensors
 - Files
 - Databases

- Analyze Data
 - Data exploration
 - Preprocessing
 - Domain-specific algorithms

- Develop
 - AI model
 - Algorithm development
 - Modeling & simulation

- Deploy
 - Desktop apps
 - Enterprise systems
 - Embedded devices
Deploy MATLAB Algorithms and Applications

Share your work outside of MATLAB without having to recode your algorithms

- Standalone desktop applications
- Add-ins for Microsoft Excel
- Software components to integrate with other languages (C/C++, .NET, Python, Java)
- Software components for web and enterprise applications
Deploy MATLAB Algorithms

Deploy machine learning and deep learning models using automatically generated code

- Generate C code for predictive machine learning and deep learning models
- Generate optimized CUDA code for deep learning, embedded vision, and autonomous systems
PID Control Tuning

Implement an embedded PID auto-tuning algorithm

- Automatically tune PID controller gains in real time against a physical plant
- No model of plant dynamics required
- Deploy the auto-tuning algorithm to embedded software using automatic code generation
Prepare Your Model for Code Generation

Prepare model components for code generation
Prepare Your Model for Code Generation

Prepare model components for code generation

Prepare model data for code generation
Generate Code from Simulink Models

Access and define all the information in your model related to code generation

- View and define implementation data in one place
- View implementation details without model details
- Improve code performance and ease integration with other C code

Row-major memory layout option
Verification and Validation

Products for the entire workflow

Simulink Requirements

Simulink Design Verifier

Simulink Check

Polyspace

Simulink Coverage

Simulink Test
- Deployment of MATLAB Algorithms and Applications
- Code Generation from Simulink Models
- Verification and Validation
- Autonomous Systems
- Wireless Communications
- Artificial Intelligence (AI)
Designing Autonomous Systems

Perceive

Sense

Decide & Plan

Act
Designing Autonomous Systems

Mapping of environments using sensor data

- Segment and register lidar point clouds
- Lidar-Based SLAM: Localize robots and build map environments using lidar sensors
Designing Autonomous Systems

Understanding the environment using computer vision and deep learning techniques

- Object detection and tracking
- Semantic segmentation using deep learning

Designing Autonomous Systems

Design synthetic driving scenarios to test controllers and sensor fusion algorithms

- Interactively design synthetic driving scenarios composed of roads and actors (*vehicles, pedestrians, etc.*)
- Generate visual and radar detections of actors

Driving Scenario Designer App
Designing Autonomous Systems

Model predictive control for adaptive cruise control and lane-keeping algorithms

- Use prebuilt blocks instead of starting from scratch
- Simplified application-specific interfaces for configuring model predictive controllers
- Flexibility to customize for your application
Full Vehicle Simulation

Ride & handling

Chassis controls

Automated Driving
Design with the Latest Wireless Standards

- LTE
- 5G
- 802.11ax
- ZigBee®
- NB-IoT
Model-Based Design for Wireless Communications

- Algorithm Design and Verification
- RF, Digital and Antenna Co-Design
- System Verification and Testing
- Rapid Prototyping and Production

Code Generation and Verification
- Fixed-Point Designer
- HDL Coder
- HDL Verifier
- LTE HDL Toolbox
- Embedded Coder
Artificial Intelligence

Data -> COMPUTER -> Model

Output

COMPUTER
Text Analytics

Work with text from equipment logs and operator reports

- **Preprocess** raw text data by extracting, filtering, and splitting

- **Visualize** text using word clouds and text scatter plots

- **Develop** predictive models using built-in machine learning algorithms (LDA, LSA, word2vec)
Predictive Maintenance

Design and test condition monitoring and predictive maintenance algorithms

- Import sensor data from local files and cloud storage (Amazon S3, Windows Azure Blob Storage, and Hadoop HDFS)
- Use simulated failure data from Simulink models
- Estimate remaining useful life (RUL)
- Get started with examples (motors, gearboxes, batteries, and other machines)
Deep Learning

Design, build, and visualize convolutional neural networks

- Access the latest models
- Import pretrained models and use transfer learning
- Automate ground-truth labeling using apps
- Design and build your own models
- Use NVIDIA GPUs to train your models
- Automatically generate high-performance CUDA code for embedded deployment

TensorFlow
MATLAB
MXNet
MATLAB + GPU Coder

Images/sec

Prediction (TitanXP GPU)

<table>
<thead>
<tr>
<th></th>
<th>AlexNet</th>
<th>ResNet-50</th>
<th>VGG-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Images/sec</td>
<td>300</td>
<td>200</td>
<td>100</td>
</tr>
</tbody>
</table>

Neural Network Toolbox
Computer Vision System Toolbox
GPU Coder
FREE

Learn to Use MATLAB for Deep Learning in 2 Hours

Launch Deep Learning Onramp
What’s New in MATLAB and Simulink?

Platform
Productivity

▪ Design Creation
▪ Analysis
▪ Simulation, Scaling
▪ Collaboration

Workflow
Depth

▪ Deployment
▪ Code Generation
▪ Verification and Validation

Application
Breadth

▪ Autonomous Systems
▪ Wireless Communications
▪ Artificial Intelligence (AI)
MATLAB EXPO 2018