MATLAB EXPO 2016
KOREA
4월 28일 (목)
등록 하기 matlabexpo.co.kr
Product Code Generation and Real-Time Testing

김종헌 차장
Senior Application Engineer
MathWorks Korea
Agenda

- Production Code Generation
 - MathWorks’ Code Generation Products
 - Embedded Coder
 - Equivalence Test with SIL and PIL

- Integration Test
 - What’s Simulink Real-Time
 - Automation of Real-Time Testing
Code Generation Products

MATLAB Coder
Generate C and C++ code from MATLAB code

Simulink Coder
Generate C and C++ code from Simulink and Stateflow models

Embedded Coder
Generate C and C++ code optimized for embedded systems
Code Generation Products:
Simulink Coder and Embedded Coder

Simulink Coder
- Generates code for use in simulation and prototyping applications
- Comes with Generic Real-Time (GRT) based targets

Embedded Coder
- Generates efficient code that can be customized to look like hand code for production
- Comes with Embedded Real-Time (ERT) based targets
Rapid Prototyping
Simulink Coder with Simulink Real-Time

Generate, deploy, and tune code for a component (algorithm or controller) on a real-time simulator connected to system hardware.
Rapid Prototyping on Embedded Processors

Embedded Coder

Run the generated code in real time, tune parameters, and monitor real-time data on the same processor you plan to use in mass production, or a close equivalent to it.
Production Code Generation
Embedded Coder

Select Target

Choose Optimizations and File Packaging
Software-in-the-Loop Testing
Embedded Coder

Test generation production code with your environment or plant model to verify a successful conversion of the model to code.
Processor-in-the-Loop Testing
Embedded Coder

Use processor-in-the-loop PIL to evaluate the behavior of a candidate algorithm on the target processor.
Hardware-in-the-Loop Testing
Embedded Coder and Simulink Coder with Simulink Real-time

Final test before integration using simulated plant executing in real time.
Usage of Code Generation Products
Agenda

- Production Code Generation
 - MathWorks’ Code Generation Products
 - Embedded Coder
 - Equivalence Test with SIL and PIL

- Integration Test
 - What’s Simulink Real-Time
 - Automation of Real-Time Testing
Example) Controller of Landing Gear
Simple Software Architecture

Communication Interfaces

Comm Drivers

Core Software Algorithms and Logic

Output Drivers

Input Drivers

Special Device Drivers

Schedulers/Operating System And Support Utilities

Most Development is on Core Software Algorithms

Actuators

Special Interfaces

ASAP2

CCP

Sensors
Basic Code Generation Workflow for Embedded Target

- Select solver to be fixed step with discrete
- Select ert.tlc target
- Select generate code only
- Select HTML Report for easy review
- Generate code for model
- Review code in browser
Demo: Code Generation Workflow
Code Generation Reports

- Subsystem Report
- Code Interface Report
- Traceability Report
- Static Code Metrics Report
- Code Replacements Report
Demo: Code Generation Reports
Embedded Coder Quick Start

Easily configure Simulink Model to generate production code

- Ask questions about code generation goals
- Auto configure and validate model against the selections
- Show recommended configuration changes
- Apply configuration changes and generate code
Demo: Embedded Coder Quick Start
Optimization Considerations

![Configuration Parameters](image)

Conditional input branch execution

<table>
<thead>
<tr>
<th>Configuration Parameter</th>
<th>Settings for Building Code</th>
<th>Factory Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block reduction</td>
<td>Off (S/M), Off (RT)</td>
<td>Off</td>
</tr>
<tr>
<td>Implement logic signals as boolean data (yes, no)</td>
<td>No impact (S/M), RT impact (RT)</td>
<td>No impact (S/M), RT impact (RT)</td>
</tr>
<tr>
<td>Use device for fixed-point net slope correction</td>
<td>No impact</td>
<td>No impact</td>
</tr>
<tr>
<td>Use floating-point multiplication to handle net slope corrections</td>
<td>No impact</td>
<td>No impact</td>
</tr>
<tr>
<td>Remove code from floating-point to integer conversions that wrap out-of-range values</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Remove code from floating-point to integer conversions with values that map NaN</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

Mapping Application Requirements to the Optimization Pane General Tab

- **Configurable Parameter**
 - Settings for Building Code
 - Efficiency
 - Factory Default

Code Generation
- **Optimize using the specified minimum data initialization**
- **Remove root level I/O zero initializers**
- **Remove internal data zero initializers**
- **Integer and fixed-point**
 - **Remove code from floating-point to integer conversions that wrap out-of-range values**
 - **Remove code from floating-point to integer conversions with values that map NaN**
Code Generation Objectives

- Models have a lot of possible settings
- Code Generation Objectives gives a starting point
Demo: Optimizing Generated Code
Legacy Code Tool

- Legacy Code Tool is a utility that generates an S-function automatically from existing C code
- It can also insert an appropriate call to generated code
Demo: Code Generation with Legacy C Code

```c
#include "pi_ctrl_legacy.h"

real_T yi_prev;

real_T pi_control(real_T error)
{
    real_T temp_yi;
    real_T ctrl_output;

    /* Calculate yi */
    temp_yi = 0.01 * error * 2.0 + yi_prev;

    /* pi_control output */
    ctrl_output = 0.3 * error + temp_yi;

    /* yi state update */
    yi_prev = temp_yi;

    return ctrl_output;
}
```
Agenda

- Production Code Generation
 - MathWorks’ Code Generation Products
 - Embedded Coder
 - Equivalence Test with SIL and PIL

- Integration Test
 - What’s Simulink Real-Time
 - Automation of Real-Time Testing
Equivalence Test

SIL (Software-In-the-Loop) and PIL (Processor-In-the-Loop)

SW Design
- Design Model
 - simulate
 - generate
- Source Code
 - generate
- Object Code
 - Test (with and without instrumentation)
 - verify numerical equivalence with simulation
 - verify 100% code coverage (for traceability)

Model Test Harness for 100% model coverage

Generate Model Test Harness for 100% model coverage

Object Code
- generate
- verify 100% code coverage (for traceability)

Source Code
- generate

Design Model
- simulate
Software-in-the-Loop (SIL) Testing:
Verify Production Controller with Software-in-the-loop

- Host/Host
- Nonreal-time

Compiled C Code
S-Function
(Windows DLL)

Execution

Code Generation
Processor-in-the-Loop Testing:
Verify Production Controller with Processor-in-the-loop

Execution
• Host/Target
• Nonreal-time
Processor-in-the-Loop (PIL) API

Problem
- Embedded IDE Link does not support PIL for an arbitrary combination of
 - Processor
 - Compiler
 - Debugger or download utility
 - Communications channel

Solution
- Provide an API that allows integration of third-party or customer tools for
 - Building the PIL application
 - Downloading and running the application
 - Communicating with the application

Benefit
- The power of PIL verification is easily adaptable for any target environment
- A fully documented API is stable across MathWorks releases
PIL Testing Example
Infineon Tricore with Trace32 Debugger
Key Benefits of SIL and PIL

- Reuse test vectors for simulation, SIL and PIL
 - Verify correct execution behaviour of compiled code (including on production hardware)
 - Collect metrics for the generated code
 - Code coverage
 - Execution profiling
 - Stack profiling

- Evaluate hardware specific optimizations

- Generate artifacts for IEC-61508, IEC-62304, ISO-26262, EN-50128, and DO-178 certification

- Early verification and fixing of defects reduces cost
Agenda

- Production Code Generation
 - MathWorks’ Code Generation Products
 - Embedded Coder
 - Equivalence Test with SIL and PIL

- Integration Test
 - What’s Simulink Real-Time
 - Automation of Real-Time Testing
Real-Time Simulation and Testing Tasks:
Rapid Controls Prototyping
Real-Time Simulation and Testing Tasks:

Hardware-in-the-loop (HIL) Simulation
Today’s Configuration

- **Controller Model**
- **Plant Model**

Target Computer Hardware

1. Click Code Generation and Download

1. Click Code Generation and Download

CAN

11100101
What is Simulink Real-Time?

From desktop simulation to real time

Creation of real-time applications from Simulink models and loading them onto dedicated target computer hardware in 3 automated steps:

1. Code Generation
2. Compile and Link
3. Download and Ready to Run
What is Simulink Real-Time?

Connect to your physical system

- Support for a broad range of I/O types and communication protocols
- Easy drag and drop and configuration within a Simulink model
What is Simulink Real-Time?

Extendable, integrated, and interactive

1. Live parameter tuning, signal monitoring, and execution control
2. Data logging for offline analysis in MATLAB
3. UI/HMI connectivity
4. Extensibility with other software tools (e.g. virtual reality)
Streaming to the Simulation Data Inspector

1. Select the signals to stream
2. Connect to the running target computer
3. Visualize in the Simulation Data Inspector
What Hardware is used with Simulink Real-Time?

Development computer + target computer

Development Computer with MATLAB and Simulink and Simulink Real-Time

Target Computer Hardware from Speedgoat
Current Performance Level

- 25 microsecond minimum sample time
- < 1 microsecond sample time with FPGA’s
- High performance quad core Intel processors
- Expandable, low latency I/O

real-time multi-core scheduler
Performance Advisor for Real-Time Execution

- Encodes best practices for transitioning to real-time
- Adds testing on the target computer.

Before: 4000 ms
After: 300 ms
Configuring Landing Gear Model for HIL Testing

Problem: Configure solvers to minimize computations so the model can simulate in real time

Solution: Use local solvers on stiff physical networks and explicit solvers elsewhere

Numerically Stiff System

Variable step, implicit solver ODE23t (Reference)

Fixed-step, explicit solver (ODE1)

Local solver: Implicit fixed-step

Configure Model
Generate C Code
Real-Time Hardware
Agenda

- Production Code Generation
 - MathWorks’ Code Generation Products
 - Embedded Coder
 - Equivalence Test with SIL and PIL

- Integration Test
 - What’s Simulink Real-Time
 - Automation of Real-Time Testing
Let’s remind Simulink Test....

Tool for authoring, managing, and executing simulation-based tests

- **Test Harness**: Embedded canvas for isolation testing of components
- **Test Sequence**: Easily express logic-based tests
- **Test Manager**: Systematic authoring and management of test cases
Test Automation with Simulink Test

- Available to verify algorithm in real-time
 - Reusing Test Harness and Test Sequence in Simulink Test
 - Avoiding multiple build/download to target
 - Avoiding additional programing to access test results

![Diagram showing test automation process]

- Download real-time application
- Collect verification data
- I/O
- Physical System
- Controller
- Target Computer
Key Design Principles

- Use Test Sequence Block for Assessments
 - Evaluated in real-time on target
 - Non-fatal verification language
 - Failure does not stop execution
 - Language constructs for fault recovery
 - Prevent hardware damage

- Runtime variants
 - Avoid multiple build/download to target

- Rapid Iterations
 - Over runtime variants on target hardware
Summary

- **Production Code Generation**
 - You can get a code for production without human error.
 - Embedded Coder provides “Quick Start” for beginner to try code generation easily.

- **Real-Time Testing**
 - You can get many benefits with real-time testing
 - Reduce hardware testing
 - Avoid breaking expensive equipment
 - Improve product quality
 - You can do real-time testing in one environment with Simulink.
 - For real-time testing, you can reuse all test cases developed to verify models.