MATLAB을 활용한 컴퓨터 비전
(3차원 비전 및 기계학습)

Application Engineer
Caleb Kim
Contents

- Stereo and 3D Vision
- Machine Learning
- Deep Learning
Camera Calibration App

- Simplified workflow for estimating camera intrinsic and extrinsic parameters
- Removes the effects of lens distortion from an image
- Automatically detects checkerboard patterns
Evaluate Calibration Accuracy

Determine the accuracy of estimated camera parameters

- Plot re-projection errors as a bar graph or as a scatter plot
- Visualize the 3-D locations of the calibration patterns relative to the camera, or the cameras relative to the pattern.

» `showReprojectionErrors(cameraParameters)`
» `showExtrinsics(cameraParameters)`
Remove Lens Distortion From an Image

Removes radial and tangential distortion.

- Radial distortion ("barrel" or "pincushion") is caused by the curvature of the lens
- Tangential distortion is caused by misalignment between the lens and the sensor

\[J = \text{undistortImage}(I, \text{cameraParameters}) \]
Featured example: measure the diameter of a penny in millimeters.

- Undistort the image
- Detect the penny
- Project points from the image into the world
- Measure the diameter in millimeters

> MeasuringPlanarObjectsExample
Structure From Motion

Estimating 3-D structure of a scene from a set of 2D-images

- Match a set of points between the two images
- Estimate the fundamental Matrix
- Compute the motion of camera
- 3D reconstruction
- Detect an Object

» StructureFromMotionExample.m
Recovering Scene Depth with Stereo Cameras
Epipolar Geometry
Fundamental Matrix

$X_L^T F X_R = 0$
Stereo Camera Calibration

- Simplifies and automates calibration process
Stereo Vision Workflow

- Calibration
 - App (14b)

- Rectification
 - Codegen (15a)

- Disparity Estimation
 - Block matching, semi-global matching (14b)
 - Codegen (14b)

- 3-D Reconstruction
 - Codegen (15a)
Point Cloud Registration

- **Rigid registration**
 - `pcregigid`: Fundamental operation across point cloud applications
 - ‘Iterative Closest Point’ Algorithm
 - Comparable to state-of-the-art c++ package on academic benchmarks
 - 3-D Point Cloud Registration and Stitching Featured Example
Point Cloud Processing

- 3-D point cloud processing
 - File I/O, Viewers
 - Registration, denoising, downsampling, geometric transformation
Point Cloud Application – Robot Vision

- Robot Navigation

- Robot Perception
Point Cloud Application – Advanced Driver Assistance Systems (ADAS)

- Collision Detection

- Visual SLAM (Simultaneous localization and mapping) / Visual Odometry
Contents

- Stereo and 3D Vision
- Machine Learning
- Deep Learning
Today’s Objectives

Use examples to solve real-world problems to:

- See how MATLAB simplifies the machine learning workflow
- Quickly go from idea to prototype
- What's new for machine learning, deep learning, image processing and computer vision
Agenda

- Introduction
 - Applications
 - Workflow
 - Common Challenges

- Demonstrations
 - Object recognition using live video
 - Deep learning for recognition
 - Training object detectors
 - Grouping or clustering images by visual similarity

- Conclusion
What Problems Can You Solve?

Object Detection

Object Recognition or Classification

Object Detection
Machine Learning

Machine learning uses **data** and produces a **program** to perform a **task**

Task: Image Category Recognition

If **brightness** > 0.5
then ‘hat’

If **edge_density** < 4 and **major_axis** > 5
then “boat”

...
Machine Learning Workflow Using Images

Training Data

Feature Extraction

Learning or Modelling

Training

Input Image

Feature Extraction

Classification

Classifier / Model

‘hat’
Viola Jones – Cascade Object Detectors

- Algorithm to detect people's faces, noses, eyes, mouth, or upper body.
- Ability to train custom classifiers using the Training Image Labeler
Cascade of Classifiers in CascadeObjectDetector

- Each stage of cascade is Gentle Adaboost, an ensemble of weak learners
- Each stage rejects negative samples using a weighted vote of these weak learners
- The samples not rejected are passed to the next stage
- Positive detection means the sample passed all stages of the cascade
Challenges: Machine Learning Workflow Using Images

1. **Training Data**
2. **Feature Extraction**
3. **Learning or Modelling**

Challenge 1

Challenge 2

Challenge 3

![Input Image](image)

![Feature Extraction](image)

![Classification](image)

Classifier / Model → 'hat'
Common Challenges for Machine Learning with Images

- **Challenge 1**: Handling large sets of images
- **Challenge 2**: How to extract discriminative information from images
- **Challenge 3**: How to model tasks or data using machine learning
Goal: Recognize/Classify Objects in Live Video

Known as **object classification or recognition**
What is Feature Extraction?

Feature Extraction
- Representations often invariant to changes in scale, rotation, illumination
- More compact than storing pixel data
- Feature selection based on nature of problem

Sparse

Dense
Image Processing Toolbox provides a comprehensive set of reference-standard algorithms, functions, and apps for image processing, analysis, visualization, and algorithm development. You can perform image analysis, image segmentation, image enhancement, noise reduction, geometric transformations, and image registration. Many toolbox functions support multicore processors, GPUs, and C-code generation.

Image Processing Toolbox supports a diverse set of image types, including high dynamic range, gigapixel resolution, embedded ICC profile, and tomographic. Visualization functions and apps let you explore images and videos, examine a region of pixels, adjust color and contrast, create contours or histograms, and manipulate regions of interest (ROIs). The toolbox supports workflows for processing, displaying, and navigating large images.
Bag of “Visual Words” (features)

Class / Label

Training Data

Vocabulary / Bag of Words

‘mugs’
Image Classification with Bag of Words

Training Data

Bag = Visual Vocabulary

Input Image

Classifier

‘hat’
Many Options for Features and Machine Learning

Feature Extraction
- BRISK, FREAK, SURF
- Histogram of Oriented Gradients (HoG)
- Using box filters (integral images)
- Bag of visual words
- Color-based features
- Frequency-domain features

Machine Learning
- SVM
- Decision trees
- AdaBoost
- Bagged trees
- k-NN
- Discriminant analysis
- Bayes classifiers

Bottom Line: Many permutations and combinations to fit the needs of your problem
Challenges: Machine Learning Workflow Using Images

- **Training Data**
- **Feature Extraction**
- **Learning or Modelling**

Challenge 1:
- Input Image
- Feature Extraction

Challenge 2:
- Classifier / Model
- ‘hat’

Challenge 3:
- Classification
Common Challenges for Machine Learning with Images

- **Challenge 1:** Handling large sets of images

- **Challenge 2:** How to extract discriminative information from images

- **Challenge 3:** How to model problem using machine learning techniques

- Easy to handle large sets of images
 - imageSet

- Bag of words for feature extraction
 - More available in Computer Vision System Toolbox
Examples of Object Recognition/Classification

- Automatic scene categorization
- Biometrics
 - Face recognition
 - IRIS recognition
 - Fingerprint recognition
- Part recognition for factory automation
- Autonomous robotics
Contents

- Stereo and 3D Vision

- Machine Learning

- Deep Learning
Deep Learning is Ubiquitous

Computer Vision
- Pedestrian and traffic sign detection
- Landmark identification
- Scene recognition
- Medical diagnosis and drug discovery

Text and Signal Processing
- Speech Recognition
- Speech & Text Translation

Robotics & Controls

and many more…
What is Deep Learning?

Deep learning performs **end-end learning** by learning **features, representations and tasks** directly from **images, text and sound**.

Traditional Machine Learning

- Manual Feature Extraction
- Classification

Deep Learning approach

- Convolutional Neural Network (CNN)
- **End-to-end learning**
- Feature learning + Classification
Demo: Live Object Recognition with Webcam
Why is Deep Learning so Popular?

- **Results:** Achieved substantially better results on ImageNet large scale recognition challenge
 - 95% + accuracy on ImageNet 1000 class challenge

- **Computing Power:** GPU’s and advances to processor technologies have enabled us to train networks on massive sets of data.

- **Data:** Availability of storage and access to large sets of labeled data
 - E.g. ImageNet, PASCAL VoC, Kaggle

Table

<table>
<thead>
<tr>
<th>Year</th>
<th>Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-2012 (traditional computer vision and machine learning techniques)</td>
<td>> 25%</td>
</tr>
<tr>
<td>2012 (Deep Learning)</td>
<td>~ 15%</td>
</tr>
<tr>
<td>2015 (Deep Learning)</td>
<td><5%</td>
</tr>
</tbody>
</table>
Two Approaches for Deep Learning

1. Train a Deep Neural Network from Scratch

- Convolutional Neural Network (CNN)
- Lots of data
- Learned features
- New Task
- Fine-tune network weights

2. Fine-tune a pre-trained model (transfer learning)

- Pre-trained CNN
- Medium amounts of data
- New Task
- Fine-tune network weights
Two Deep Learning Approaches

Approach 1: Train a Deep Neural Network from Scratch

Convolutional Neural Network (CNN)

- **Learned features**
- **Training data**: 1000s to millions of labeled images
- **Computation**: Compute intensive (requires GPU)
- **Training Time**: Days to Weeks for real problems
- **Model accuracy**: High (can over fit to small datasets)

Recommended **only** when:

<table>
<thead>
<tr>
<th>Training data</th>
<th>1000s to millions of labeled images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computation</td>
<td>Compute intensive (requires GPU)</td>
</tr>
<tr>
<td>Training Time</td>
<td>Days to Weeks for real problems</td>
</tr>
<tr>
<td>Model accuracy</td>
<td>High (can over fit to small datasets)</td>
</tr>
</tbody>
</table>
Two Deep Learning Approaches

Approach 2: Fine-tune a pre-trained model (transfer learning)

CNN trained on massive sets of data
- Learned robust representations of images from larger data set
- Can be fine-tuned for use with new data or task with small – medium size datasets

Recommended when:

<table>
<thead>
<tr>
<th>Training data</th>
<th>100s to 1000s of labeled images (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computation</td>
<td>Moderate computation (GPU optional)</td>
</tr>
<tr>
<td>Training Time</td>
<td>Seconds to minutes</td>
</tr>
<tr>
<td>Model accuracy</td>
<td>Good, depends on the pre-trained CNN model</td>
</tr>
</tbody>
</table>
Convolutional Neural Networks

- Train “deep” neural networks on structured data (e.g. images, signals, text)
- Implements Feature Learning: Eliminates need for “hand crafted” features
- Trained using GPUs for performance
Convolutional Neural Networks

Input Image → Convolution → RELU → Pooling → Convolution → RELU → Pooling → Convolution → RELU → Pooling → ... → FC

Flower → Cup → Car → Tree

Sliding window

Filters

* light and dark

simple shapes

complex shapes

shades that can be used to define a flower

Every feature map output is the result of applying a filter to the image. The new feature map is the next input.

Activations of the network at a particular layer

Probability

X1

X2

X3

softmax

categorical probability distribution

Flower

Cup

Car

Tree
Convolution Layer

- Core building block of a CNN
- Convolve the filters sliding them across the input, computing the dot product

Intuition: learn filters that activate when they “see” some specific feature
Convolution Layer – Choosing Hyperparameters

- Number of filters, K
- Filter size, F
- Stride, S
- Zero padding, P

Conv Layer Input

- W_1 is the width of the input.
- H_1 is the height of the input.
- F is the filter size.
- S is the stride.
- P is the zero padding.

Conv Layer Output

- $W_2 = (W_1 - F + 2P)/S + 1$
- $H_2 = (H_1 - F + 2P)/S + 1$
- $D_2 = K$

MathWorks
Rectified Linear Unit (ReLU) Layer

- Frequently used in combination with Convolution layers
- Do not add complexity to the network
- Most popular choice: \(f(x) = \max(0, x) \), activation is thresholded at 0
Pooling Layer

- Perform a **downsampling** operation across the spatial dimensions
- Goal: progressively decrease the size of the layers
- Max pooling and average pooling methods
- Popular choice: Max pooling with 2x2 filters, Stride = 2
Challenges using Deep Learning for Computer Vision

<table>
<thead>
<tr>
<th>Steps</th>
<th>Challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Importing Data</td>
<td>Managing large sets of labeled images</td>
</tr>
<tr>
<td>Preprocessing</td>
<td>Resizing, Data augmentation</td>
</tr>
<tr>
<td>Choosing an architecture</td>
<td>Background in neural networks (deep learning)</td>
</tr>
<tr>
<td>Training and Classification</td>
<td>Computation intensive task (requires GPU)</td>
</tr>
<tr>
<td>Iterative design</td>
<td></td>
</tr>
</tbody>
</table>
Demo: Classifying the CIFAR-10 dataset

Objective: Train a Convolutional Neural Network to classify the CIFAR-10 dataset

Data:

<table>
<thead>
<tr>
<th>Input Data</th>
<th>Thousands of images of 10 different Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td>AIRPLANE, AUTOMOBILE, BIRD, CAT, DEER, DOG, FROG, HORSE, SHIP, TRUCK</td>
</tr>
</tbody>
</table>

Approach:
- Import the data
- Define an architecture
- Train and test the CNN

Demo: Classifying the CIFAR-10 dataset

%% Download the CIFAR-10 dataset
if ~exist('cifar-10-batches-mat', 'dir')
cifar10Dataset = 'cifar-10-matlab';
disp('Downloading 174MB CIFAR-10 dataset...');
web('save!cifar10Dataset.tar.gz')
<table>
<thead>
<tr>
<th>Challenge</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing large sets of labeled images</td>
<td><code>imageSet</code> or <code>imageDataStore</code> to handle large sets of images</td>
</tr>
<tr>
<td>Resizing, Data augmentation</td>
<td><code>imresize</code>, <code>imcrop</code>, <code>imadjust</code>, <code>imageInputLayer</code>, etc.</td>
</tr>
<tr>
<td>Background in neural networks (deep learning)</td>
<td>Intuitive interfaces, well-documented architectures and examples</td>
</tr>
<tr>
<td>Computation intensive task (requires GPU)</td>
<td>Training supported on GPUs No GPU expertise is required</td>
</tr>
<tr>
<td></td>
<td>Automate. Offload computations to a cluster and test multiple architectures</td>
</tr>
</tbody>
</table>
Demo

Fine-tune a pre-trained model (transfer learning)

Pre-trained CNN
(AlexNet – 1000 Classes)

New Data

Car

SUV

New Task – 2 Class Classification
Demo

Fine-tune a pre-trained model (transfer learning)
Addressing Challenges in Deep Learning for Computer Vision

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing large sets of labeled images</td>
<td>imageSet or imageDataStore to handle large sets of images</td>
</tr>
<tr>
<td>Resizing, Data augmentation</td>
<td>imresize, imcrop, imadjust, imageInputLayer, etc.</td>
</tr>
<tr>
<td>Background in neural networks (deep learning)</td>
<td>Intuitive interfaces, well-documented architectures and examples</td>
</tr>
<tr>
<td>Computation intensive task (requires GPU)</td>
<td>Training supported on GPUs</td>
</tr>
<tr>
<td></td>
<td>No GPU expertise is required</td>
</tr>
<tr>
<td></td>
<td>Automate. Offload computations to a cluster and test multiple architectures</td>
</tr>
</tbody>
</table>
Key Takeaways

- Consider Deep Learning when:
 - Accuracy of traditional classifiers is not sufficient
 - ImageNet classification problem
 - You have a pre-trained network that can be fine-tuned
 - Too many image categories (100s – 1000s or more)
 - Face recognition

MATLAB for Deep Learning and Computer Vision

Email us:
Challenges using Deep Learning for Computer Vision

<table>
<thead>
<tr>
<th>Steps</th>
<th>Challenge</th>
</tr>
</thead>
</table>

- **Importing Data**
 - Managing large sets of images

- **Training and Classification**
 - Compute intensive
 - Requires GPU

- **Learning Curve Required**
 - Most engineers didn't study deep learning

- **Iterative**
Thank You!

Questions?