MATLAB EXPO 2016
Get More From Your Data with Data Analytics
Guangyuan Yang
BuildingIQ Develops Proactive Algorithms for HVAC Energy Optimization in Large-Scale Buildings

Office buildings, hospitals, and other large-scale commercial buildings account for about 30% of the energy consumed worldwide. The heating, ventilation, and air-conditioning (HVAC) systems in these buildings are often inefficient because they do not take into account changing weather patterns, variable energy costs, or the building's thermal properties.

BuildingIQ has developed Predictive Energy Optimization™ (PEO), a cloud-based software platform that reduces HVAC energy consumption by 10–25% during normal operation. PEO was developed in cooperation with the Commonwealth Scientific and Industrial Research Organisation (CSIRO), HVAC pressure sensors, as well as weather and energy cost data. A single building often produces billions of data points, and the scientists and engineers needed tools for efficiently filtering, processing, and visualizing this data.

To run their optimization algorithms, the scientists and engineers had to create an accurate mathematical model of a building's thermal and power dynamics. The algorithms would use this calculated model to run constrained optimizations that maintained occupant comfort while minimizing energy costs.

BuildingIQ needed a way to rapidly develop mathematical models, test optimization algorithms, and simulate the performance of HVAC systems under various conditions.
How did we achieve this?
\[\frac{\partial u}{\partial t} - \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = 0 \]
Challenges to Gain Value from Data

Access and Explore Data

Process Data

Develop Predictive Models

Integrate Analytics with Systems

More devices
More data
More often

Rapid data exploration

Development of scalable algorithms

Ease of deployment

MATLAB EXPO 2016
Why MATLAB?

1. Analytics increasingly require **both business and engineering data**

2. Enable **Domain Experts to be Data Scientists**

3. Develop **embedded systems** with analytics powered functionality

4. Develop analytics to run on **both enterprise and embedded platforms**

DATA
- Engineering, Scientific, and Field
- Business and Transactional
Why MATLAB?

1. **Analytics increasingly require both business and engineering data**

2. **Enable Domain Experts to be Data Scientists**

3. **Develop embedded systems with analytics powered functionality**

4. **Develop analytics to run on both enterprise and embedded platforms**

DATA
- Engineering, Scientific, and Field
- Business and Transactional

Smarter Embedded Systems

Business Systems

MATLAB EXPO 2016
Accessing Data
Accessing Data

```
Connect to data

ds = datastore('phonedata')

Load in the data, and create feature vectors

trainingData = [];

while hasdata(ds)
    % Read the next data file
    rawdata = read(ds);

    % Summary Statistics
    varMeans = varfun(@mean, rawdata(:,1:6));
    varStd = varfun(@std, rawdata(:,1:6));

    % Signal Processing
    varRMS = varfun(@rms, rawdata(:,1:6));
    varMeanFreq = varfun(@meanfreq, rawdata(:,1:6));

    % Activity
    activity = rawdata(1:end);
```
Processing Signals and Images

- cheby2
- filter
- rms
- pwelch
- periodogram
- xcov
- findpeaks
- movmean
- movstd
- ...

- rgb2gray
- imfill
- bwmorph
- imfindcircles
Processing Data

![MATLAB Window](image)

Table Example

<table>
<thead>
<tr>
<th>Unit</th>
<th>Setting1</th>
<th>Setting2</th>
<th>Setting3</th>
<th>FanInletTemp</th>
<th>LPCOutletTemp</th>
<th>HPCOutletTemp</th>
<th>LPTOutletTemp</th>
<th>FanInletPres</th>
<th>BypassDuctPres</th>
<th>TotalHI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-7.0000e-04</td>
<td>-4.0000e-04</td>
<td>100</td>
<td>518.6700</td>
<td>641.8200</td>
<td>1.5897e+03</td>
<td>1.4006e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.0019</td>
<td>-3.0000e-04</td>
<td>100</td>
<td>518.6700</td>
<td>642.1500</td>
<td>1.5918e+03</td>
<td>1.4031e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-0.0043</td>
<td>3.0000e-04</td>
<td>100</td>
<td>518.6700</td>
<td>642.3500</td>
<td>1.5880e+03</td>
<td>1.4042e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>7.0000e-04</td>
<td>0</td>
<td>100</td>
<td>518.6700</td>
<td>642.3500</td>
<td>1.5828e+03</td>
<td>1.4019e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-0.0019</td>
<td>-2.0000e-04</td>
<td>100</td>
<td>518.6700</td>
<td>642.3700</td>
<td>1.5829e+03</td>
<td>1.4062e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-0.0043</td>
<td>-1.0000e-04</td>
<td>100</td>
<td>518.6700</td>
<td>642.1000</td>
<td>1.5845e+03</td>
<td>1.3984e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1.0000e-03</td>
<td>1.0000e-04</td>
<td>100</td>
<td>518.6700</td>
<td>642.4800</td>
<td>1.5923e+03</td>
<td>1.3978e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-0.0034</td>
<td>3.0000e-04</td>
<td>100</td>
<td>518.6700</td>
<td>642.5600</td>
<td>1.5830e+03</td>
<td>1.4010e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>8.0000e-04</td>
<td>1.0000e-04</td>
<td>100</td>
<td>518.6700</td>
<td>642.1200</td>
<td>1.5910e+03</td>
<td>1.3948e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-0.0033</td>
<td>1.0000e-04</td>
<td>100</td>
<td>518.6700</td>
<td>642.7100</td>
<td>1.5912e+03</td>
<td>1.4005e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0.0018</td>
<td>-3.0000e-04</td>
<td>100</td>
<td>518.6700</td>
<td>642.2800</td>
<td>1.5818e+03</td>
<td>1.4006e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0.0016</td>
<td>2.0000e-04</td>
<td>100</td>
<td>518.6700</td>
<td>642.0600</td>
<td>1.5834e+03</td>
<td>1.4002e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>-0.0019</td>
<td>4.0000e-04</td>
<td>100</td>
<td>518.6700</td>
<td>643.0700</td>
<td>1.5822e+03</td>
<td>1.4008e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>9.0000e-04</td>
<td>0</td>
<td>100</td>
<td>518.6700</td>
<td>642.3500</td>
<td>1.5930e+03</td>
<td>1.3992e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>-0.0018</td>
<td>-3.0000e-04</td>
<td>100</td>
<td>518.6700</td>
<td>642.4300</td>
<td>1.5838e+03</td>
<td>1.4021e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>6.0000e-04</td>
<td>5.0000e-04</td>
<td>100</td>
<td>518.6700</td>
<td>642.1300</td>
<td>1.5880e+03</td>
<td>1.4045e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>2.0000e-04</td>
<td>2.0000e-04</td>
<td>100</td>
<td>518.6700</td>
<td>642.5800</td>
<td>1.5850e+03</td>
<td>1.4000e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>-0.0031</td>
<td>1.0000e-04</td>
<td>100</td>
<td>518.6700</td>
<td>642.6200</td>
<td>1.5910e+03</td>
<td>1.3961e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0.0032</td>
<td>-3.0000e-04</td>
<td>100</td>
<td>518.6700</td>
<td>641.7900</td>
<td>1.5876e+03</td>
<td>1.4004e+03</td>
<td>14.6200</td>
<td>21.6100</td>
</tr>
</tbody>
</table>
Processing Data

```matlab
% Reading data
sensorData = readtable('train_FD001_Unit_1.csv', 'ReadVariableNames', true);

% Selecting relevant variable names
variableNames = {'Unit', 'Time', 'LPCOutletTemp', 'HPCOutletTemp', ...
                 'LPTOutletTemp', 'TotalHPOutletPres', 'PhysFanSpeed', ...
                 'PhysCoreSpeed', 'StaticHPCOutletPres', 'FuelFlowRatio', ...
                 'CorrFanSpeed', 'CorrCoreSpeed', 'BypassRatio', ...
                 'BleedEnthalpy', 'HPTCoolantBleed', 'LPTCoolantBleed'};

% Removing noise
sensorData = sensorData(:, variableNames);

% Plotting data
>> plot(sensorData.LPCOutletTemp)
>> plot(sensorData.FanInletTemp)
>> sensorData(:, 'FanInletTemp') = [];
Processing Data
Why MATLAB?

1. Analytics increasingly require both business and engineering data

DATA
- Engineering, Scientific, and Field
- Business and Transactional

3. Develop embedded systems with analytics powered functionality

2. Enable Domain Experts to be Data Scientists

4. Develop analytics to run on both enterprise and embedded platforms

Smarter Embedded Systems

DATA

Business Systems

Data Scientist
Enabling Domain Experts to be Data Scientists

"MATLAB has helped accelerate our R&D and deployment with its robust numerical algorithms, extensive visualization and analytics tools, reliable optimization routines, support for object-oriented programming, and ability to run in the cloud with our production Java applications."

Borislav Savkovic, BuildingIQ
Apps - Classification Learner app
MATLAB Differentiators

1. Analytics increasingly require **both business and engineering data**

2. Enable **Domain Experts to be Data Scientists**

3. Develop **embedded systems** with analytics powered functionality

4. Develop analytics to run on **both enterprise and embedded platforms**

DATA
- Engineering, Scientific, and Field
- Business and Transactional

Smarter Embedded Systems

Business Systems

DATA
- Engineering, Scientific, and Field
- Business and Transactional

MMATLAB EXPO 2016