MATLAB EXPO 2017
How to build an autonomous anything

Michelle Hirsch
Head of MATLAB Product Management
MathWorks
Well, hello Sunshine. What's for breakfast?
Autonomous Technology
Autonomous

Having the power for self-governance
Autonomous Technology

Provides the ability of a system to act independently of direct human control under unrehearsed conditions
Capabilities of an Autonomous System

Sense
Capabilities of an Autonomous System

Sense

Perceive
Capabilities of an Autonomous System

- Sense
- Perceive
- Decide & Plan
Capabilities of an Autonomous System

- Sense
- Perceive
- Decide & Plan
- Act
Autonomous Technology Transfers Responsibility to Computers

Degree of Autonomy

Responsibility

Computer

Human
Cost of rig: >$1M
Repair cost: $100,000
Cost of valve: $200
Autonomous Service for Predictive Maintenance

Which sensor values should they use?

- Pressure
- Vibration
- Timing
- Temperature
- Other variables
Autonomous Service for Predictive Maintenance

Sense
Perceive
Decide & Plan
Act

Normal Operation
Monitor Closely
Maintenance Needed
Machine Learning or Deep Learning?

Machine Learning Approach

Sensor 1
Sensor 2
... Sensor 25

Correlation Analysis

Sensor a
Sensor b
Sensor c

Feature Extraction

Classification

Output

1. Normal
2. Monitor
3. Maintain

Deep Learning Approach

Sensor 1
Sensor 2
... Sensor 25

Feature Extraction & Classification

Output

1. Normal
2. Monitor
3. Maintain
What are the best predictors?

- Data-driven
What are the best predictors?

- Data-driven
- Model-driven

Jet Engine Monitoring
What are the best predictors?

Find out more about machine learning:
Machine Learning Simplified

Paola Jaramillo
Track B 13:15 – 13:45

Find out more about predictive maintenance:
Build predictive maintenance algorithms using physical models

Demo Station
Bazille’s Studio
Frederic Bazille (Paris, 1870)

Shuffleton’s Barbershop
Norman Rockwell (Vermont, 1950)
Bazille’s Studio
Frederic Bazille (Paris, 1870)

Shuffleton's Barbershop
Norman Rockwell (Vermont, 1950)
Autonomous Artistic Style Classification
Rutgers University

Sense

Perceive

Decide & Plan

Act

Image Feature Extraction

Visual Features

Machine Learning Classification

Style Classifier (SVM)

Style: Regionalism

Genre Classifier (SVM)

Genre: Interior

Artist Classifier (SVM)

Artist: Rockwell

Machine Learning Classification

Sense

Perceive

Decide & Plan

Act
Where to add autonomy with perception?

- Analyze more data
- Reduce bias
- Reduce variability
- Save time
- Improve performance

Determine Loudspeaker Quality

Virtual Semiconductor Manufacturing Calibration
Autonomous Glucose Level Management
Autonomous Glucose Level Management
Bigfoot Biomedical

Sense
Perceive
Decide & Plan
Act

Target Glucose Level
Insulin Pump
Person
Continuous Glucose Monitor
Autonomous Glucose Level Management
Bigfoot Biomedical

Sense

Target Glucose Level

Perceive

Insulin Pump

Decide & Plan

Mobile App

Act

Continuous Glucose Monitor

Person
Autonomous Glucose Level Management
Bigfoot Biomedical

Sense

Target Glucose Level

Simulink, Stateflow, Polyspace

Insulin Pump

Perceive

Mobile App

Decide & Plan

Continuous Glucose Monitor

Act

Person

Simulink,
Stateflow,
Polyspace

+ -

+ +
Autonomous Glucose Level Management
Bigfoot Biomedical

Sense

Perceive

Decide & Plan

Act

Target Glucose Level

Insulin Pump

Mobile App

Continuous Glucose Monitor

Person
Autonomous Glucose Level Management
Bigfoot Biomedical

Sense
Perceive
Decide & Plan
Act

Target Glucose Level
Insulin Pump
Mobile App
Continuous Glucose Monitor
Person
Virtual Clinic
Scaling computations to simulate 50 million patients a day
Where will you get your data?

- Simulation
- Public repositories
- In the lab
- In the field
- Internet of Things (IoT)
Where will you get your data?

- Simulation
- Public repositories
- In the lab
- In the field
- Internet of Things (IoT)

Find out more:
Verification Techniques for Model and Code
Paul Lambrechts
Track A 15:15 – 15:45

Find out more:
Predicting Customer Behavior Using Big Data Analytics with MATLAB in the Cloud
Rachid el Mimouni, NLE
Track B 15:15 – 15:45
CNH Develops Intelligent Filling System for Forage Harvesters
Autonomous Trailer Filling

Sense

Perceive

Decide & Plan

Act
Autonomous Trailer Filling

Sense

Perceive

Decide & Plan

Act

Computer Vision Algorithms

Control Algorithms

3D Camera Image

3D Scene Simulator

Control outputs
Autonomous Trailer Filling

- **Sense**
- **Perceive**
- **Decide & Plan**
- **Act**

3D Cameras

Computer vision and controls algorithms

CAN

ECU

Actuators
Autonomous Trailer Filling

- Sense
- Perceive
- Decide & Plan
- Act

3D Cameras

Vehicle Display Controller
- Driver Input
- Visualization

Computer vision and controls algorithms

ECU

CAN

Actuators
Autonomous Trailer Filling

- Sense
- Perceive
- Decide & Plan
- Act

3D Cameras

Vehicle Display Controller
- Driver Input
- Visualization
- Computer Vision
- Controls

Embedded Coder

CAN

Computer vision and controls algorithms

ECU

Actuators
Autonomous Trailer Filling

- Sense
- Perceive
- Decide & Plan
- Act

3D Cameras

Vehicle Display Controller
- Driver Input
- Visualization
- Computer Vision
- Controls

CAN

Monitoring

Actuators

ECU
How will you put it into production?

- System Architecture
- Embedded systems
- Enterprise systems
- HMIs
How will you put it into production?

- System Architecture
- Embedded systems
- Enterprise systems
- HMIs

Find out more:
MATLAB Analytics in Enterprise Applications

Ionut Barbu
Track B 14:45 – 15:15
How to build an autonomous anything

Focus on Perception
- Look for autonomy in creative places
- Do more than manually possible

Use the Best Predictors
- Data-driven
- Model-driven

Get the Right Data
- Reduce to actionable data
- Take advantage of Big Data
- Use simulation to supplement available data

Go to Production
- Address the architecture
- Leverage Model-Based Design for embedded
- Automate integration with enterprise IT systems
What is your autonomous anything?