MATLAB EXPO 2018

Predictive Maintenance
From Development to IoT Deployment

Antje Dittmer
What is Predictive Maintenance?
I need help.
I need help. One of my cylinders is blocked. I will shut down your line in 15 hours.
What do you expect from predictive maintenance?

- Maintenance cares about day-to-day operations
 - Reduced downtime

- Operations & IT look at the bigger picture
 - Improved operating efficiency

- Engineering groups get product feedback
 - Better customer experience

- Upper management wants to drive growth
 - New revenue streams

Source: Tensor Systems
Industrial Internet of Things

Asset w. smart sensors → Edge Devices → OT Systems → IT Systems

PdM Algo

Engineer
Why MATLAB & Simulink for Predictive Maintenance

- Get started quickly
- Reduce the amount of data you need to store and transmit
- Deliver the results of your analytics based on your audience
- Create training data for your algorithm in the absence of real failure data
Challenges: How much data are you collecting?

- 1 day ~ 1.3 GB
- 20 sensors/pump ~ 26 GB/day
- 3 pumps ~ 78 GB/day
- Satellite transmission
 - Speeds approx. 128-150 kbps,
 - Cost $1,000/10GB of data
- Needle in a haystack problem
Solution: Feature extraction at the Edge

- How do you extract features?
- Which features should you extract?
- How do I deal with streaming data?
Algorithm Development for Feature Extraction at the Edge

Processing and Extracting Features from the Simulation Results

The model is configured to log the pump output pressure, output flow, motor speed and motor current.

```matlab
ens = simonulationEnsembleDatastore(fullfile('Data'),
ens.SelectedVariables = ["qOut_meas", "SimulationInput"],
reset(ens),
data = read(ens);
[flow,time_unit] = preprocess(data);
figure;
plot(flow.Time,flow.Data);

% Decide which features to extract
ens.DataVariables = [ens.DataVariables;...
"qMean"; "qVar"; "qSkewness"; "qKurtosis";...
"qPeakToPeak"; "qCrest"; "qRMS"; "qMAD"; "qCSRange"];
ens.ConditionVariables = ["Time_Unit"];
feat = extractCI(flow);
dataToWrite = [time_unit, feat];
writeToLastMemberRead(ens, dataToWrite,);
```
Solution: Feature extraction at the Edge

- How do you extract features?
 - Signal processing methods
 - Statistics & model-based methods

- Which features should you extract?
 - Depends on the data available
 - Depends on the hardware available

- How do I deal with streaming data?
 - Determine buffer size
 - Extract features over a moving buffer window
Challenges: What do your end users expect?

- Maintenance needs simple, quick information
 - Hand held devices, Alarms

- Operations needs a birds-eye view
 - Integration with IT & OT systems

- Customers expect easy to digest information
 - Automated reports
Challenges: What do your end users expect?

- Maintenance needs simple, quick information
- Operations need a bird’s eye view
 - Integration with IT & OT systems
 - Dashboards & Hand held Devices
- Customers expect easy to digest information
 - Automated reports
Solution: Flexible deployment of algorithms

- Can I reuse my algorithm code for deployment?

- How do I update my predictive model?

- How do I integrate with my IT/OT systems?
Solution: Flexible deployment of algorithms

- Can I reuse my algorithm code for deployment?
 - Code generation at the Edge
 - Libraries & executables for IT/OT systems

- How do I update my predictive model?
 - Retrain degradation models for RUL estimation
 - Retrain classification models for fault isolation

- How do I integrate with my IT/OT systems?
 - Connect to data sources & scale computations
 - Connect to dashboards & analytics platforms
Challenges: What if you don’t have the data you need?

- Lack of labelled failure data
- Multiple failure modes and failure combinations possible
- Different machines can show different behavior for the same failure
Solution: Generating failure data from Simulink models

- How do I model failure modes?
- How do I customize a generic model to a specific machine?
- How do I know if the data is accurate?
Solution: Generating failure data from Simulink models

- How do I model failure modes?
 - Work with domain experts and the data available
 - Vary model parameters or components

- How do I customize a generic model to a specific machine?
 - Fine tune models based on real data
 - Validate performance of tuned model

- How do I know if the data is accurate?
Solution: Generating failure data from Simulink models

- How do I model failure modes?
 - Work with domain experts and the data available
 - Vary model parameters or components

- How do I customize a generic model to a specific machine?
 - Fine tune models based on real data
 - Validate performance of tuned model

- How do I know if the data is accurate?

“Essentially, all models are wrong, but some are useful”

George E.P. Box
Why MATLAB & Simulink for Predictive Maintenance

- Get started quickly
- Reduce the amount of data you need to store and transmit
- Deliver the results of your analytics based on your audience
- Create training data for your algorithm in the absence of real failure data
Training: *Machine Learning with MATLAB*

After this 2-day course you will be able to:

- Discover natural patterns in data
- Create predictive models
- Validate predictions of a model
- Simplify and improve models

Public and Online Trainings
What You Can Do to Learn More

- Overview of Predictive Maintenance with MATLAB
- Overview of the Predictive Maintenance Toolbox
- MathWorks Consulting: Implementation of Predictive Maintenance Applications
- Read the Mondi Predictive Health Monitoring User Story
- Watch 'Predictive Maintenance with MATLAB: A Prognostics Case Study'