

Artificial Intelligence and Augmented Reality in Healthcare

Beril Sirmacek, Dr. –Eng.

Al Expert, Scientist and Entrepreneur

Robotics and Mechatronics University of Twente

create4D Creative Intelligence

Key Takeaways

- 1. Transition from computer science into robotics with augmented reality
- 2. Cost savings for diagnostics targeting low-cost devices
- 3. Prototyping to production simplified and enabled by code generation

Agenda

- Al and Robotics at University of Twente
- Societal challenges of AI in healthcare
- The big picture of healthcare technology
- Main usage areas of AI in healthcare
- Concluding remarks

Who we are?

Robotic and Mechatronics (RAM), University of Twente

Robotic and Mechatronics (RAM), University of Twente

Robird Project

Robotic and Mechatronics (RAM), University of Twente

Aerial Manipulation: Apply Large Force with UAVs or drones

Societal Challenges of AI in Healthcare

Trustworthy AI must comply 3 components:

- Lawful: producing data/experiments/solutions acceptable by laws (FDA)
- Ethical: ensuring that the privacy issue of the patients is taken care of and the application + data fits into ethical rules
- Robust: Technically and socially

The Big Picture of Healthcare Technology

- Modeling and Simulation: necessary to minimize too many iterations with patients and clients to converge to a ready-for-production prototype
- Robotics: increasing use in surgical procedures and orthopedics
- IoT, Data Analytics and AI: Telemedicine and Teleoperation of medical devices on the rise

Visualization

- Al for enhancing data
- 3D rendering
- AR
- Displaying the progress

Visualization

Biggest Advantage of using MATLAB

A single platform for all aspects of the project, including image processing and computer vision, SLAM, and deep learning

Handheld Device

3D reconstruction

Augmented Reality

Robotics

Al for Respiratory motion estimation

Literature gap:

- Breathing mode (deep or shallow)
- Inter- or intra-cycle variations
- Tumor size or mass
- Location of the tumor
- Properties of the tissues

Robotics

Al for Respiratory motion estimation

LSTM structure

Our overall test data sets gives 0.09 as the RSME on the estimated value and real value comparisons.

Diagnosis

Cancer is the 2nd cause of death¹

"How can we train a neural network in order to accurately segment the skin cancer tissues when very small amount of expert labelled data set is available?"

Generative Adversarial Networks (GANs)

Diagnosis

Generative Adversarial Networks (GANs)

41 expert labelled images

total 27336 number of labelled images (virtual)

Diagnosis

	Skin	Cancer
Skin	0.9598	0.0402
Cancer	0.0379	0.9621

Confusion matrix shows the 96.21% success

U-Net
Transfer learning applied from VGG16

Decision support

Reinforcement Learning

Decision support

ABCDE

rule for the early detection of melanoma

A symmetry

Borders (outer edges are uneven)

Colour (dark black or has multiple colours)

iameter (greater than 6mm)

Evolving (change in size, shape or colour)

$$f = Aw_a + Bw_b + Cw_c + Dw_d + Ew_e$$
$$w_i = \frac{1}{T} \sum_{t=1}^{T} w_{i-1} v^{t-1}$$

Concluding Remarks

- Increase collaboration with AI community, Mechatronics and Robotics departments and Technical Medicine experts
- Next step: moving from translational medicine into real-world prototypes to be used at Radboud University Hospital
 - Further distribution of the product to other hospitals, leveraging student mobility for interdepartmental collaboration between Universities and hospitals