Algorithms and Numerical Methods for Motion Planning and Motion Control: Dynamic Manipulation Assignments

Anton Shiriaev

Department of Engineering Cybernetics
Norwegian University of Science and Technology
Trondheim, Norway
(anton.shiriaev@itk.ntnu.no)

April 21, 2016
Outline

Non-prehensile manipulation assignments
 Examples and features
 A “Butterfly” robot example

Steps in Motion Planning
 Choices of Coordinates
 Searching a Motion and a Motion Generator

Steps in Synthesis of Controller
 Transverse Dynamics and Transverse Coordinates

Concluding remarks
Outline

Non-prehensile manipulation assignments
 Examples and features
 A “Butterfly” robot example

Steps in Motion Planning
 Choices of Coordinates
 Searching a Motion and a Motion Generator

Steps in Synthesis of Controller
 Transverse Dynamics and Transverse Coordinates

Concluding remarks
Non-prehensile manipulation: examples and features

Non-prehensile manipulation is manipulation of an object without a form or force-closure grasp
Non-prehensile manipulation: examples and features

Non-prehensile manipulation is manipulation of an object without a form or force-closure grasp
Non-prehensile manipulation: examples and features

Non-prehensile manipulation is manipulation of an object without a form or force-closure grasp
Non-prehensile manipulation: examples and features

Dynamic non-prehensile manipulation offers:

- New robot primitives
- Flexibility in grasping objects of different shape and size
- Increased volume of reachable states in “robot+object” workspace
Non-prehensile manipulation: examples and features

Dynamic non-prehensile manipulation offers:
- New robot primitives
- Flexibility in grasping objects of different shape and size
- Increased volume of reachable states in “robot+object” workspace

Benefits come at the expense of increased complexity in
- motion and trajectory planning
- motion control
Non-prehensile manipulation: examples and features

Dynamic non-prehensile manipulation offers:
- New robot primitives
- Flexibility in grasping objects of different shape and size
- Increased volume of reachable states in “robot+object” workspace

Benefits come at the expense of increased complexity in
- motion and trajectory planning
- motion control

The challenges in developing algorithms are
- the need in developing dynamical models for a robot, an object and their interaction;
- under-actuation, i.e. when a number of degrees of freedom is larger than a number of actuators;
- the presence of unilateral constraints
Outline

Non-prehensile manipulation assignments
 Examples and features
 A “Butterfly” robot example

Steps in Motion Planning
 Choices of Coordinates
 Searching a Motion and a Motion Generator

Steps in Synthesis of Controller
 Transverse Dynamics and Transverse Coordinates

Concluding remarks
Conceptual scheme of a “Butterfly” robot

The tasks are

- to plan a rolling of a sphere on a frame
- to design a feedback controller to stabilize a motion

One of open challenges in robotics for two decades !!!
Outline

Non-prehensile manipulation assignments
 Examples and features
 A “Butterfly” robot example

Steps in Motion Planning
 Choices of Coordinates
 Searching a Motion and a Motion Generator

Steps in Synthesis of Controller
 Transverse Dynamics and Transverse Coordinates

Concluding remarks
Choices of coordinates

Each body in plane requires 3 coordinates \((x, y, \theta)\) for describing its configuration.

The hand has a fixed point, therefore 4 quantities will be enough for reconstruction of the status of the hand and the disc.
Choices of coordinates

- Detecting of a contact point between the hand and the disc is challenging
- Contact models of rolling are simplistic
Choices of coordinates

- θ is the angle of rotation of the hand
- s is the distance to go to the shortest to the center of the disc point along the virtual curve γ_c
- w is the distance to that point along the normal direction
- ψ is the angle of rotation of the disc in the hand frame
Properties valid for rolling without slipping

- \(w \) is zero, i.e. the hand and the disc has a point contact

- \(\frac{d}{dt}s = -R \frac{d}{dt}\psi \), i.e. the disc does not slip when rolls
Outline

Non-prehensile manipulation assignments
 Examples and features
 A “Butterfly” robot example

Steps in Motion Planning
 Choices of Coordinates
 Searching a Motion and a Motion Generator

Steps in Synthesis of Controller
 Transverse Dynamics and Transverse Coordinates

Concluding remarks
Dynamics of the system

The dynamic model of the system in excessive coordinates \(q = (\theta, \psi, s, w) \) is

\[
M_e(q)\ddot{q} + C_e(q, \dot{q})\dot{q} + G_e(q) = [u, 0, 0, 0]^T + F_1 + F_2
\]

with \(u \) being a control variable; \(F_1, F_2 \) being the corresponding reaction forces.
Dynamics of the system

The dynamic model of the system in excessive coordinates $q = (\theta, \psi, s, w)$ is

$$M_e(q)\ddot{q} + C_e(q, \dot{q})\dot{q} + G_e(q) = [u, 0, 0, 0]^T + F_1 + F_2$$

with u being a control variable; F_1, F_2 being the corresponding reaction forces.

The dynamics admit the reduction of the model for two variables (θ, ψ)

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} \ddot{\theta} \\ \ddot{\psi} \end{bmatrix} + \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \begin{bmatrix} \dot{\theta} \\ \dot{\psi} \end{bmatrix} + \begin{bmatrix} g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} u \\ 0 \end{bmatrix}$$
Dynamics of the system

The dynamic model of the system in excessive coordinates \(q = (\theta, \psi, s, w) \) is

\[
M_e(q)\ddot{q} + C_e(q, \dot{q})\dot{q} + G_e(q) = [u, 0, 0, 0]^T + F_1 + F_2
\]

with \(u \) being a control variable; \(F_1, F_2 \) being the corresponding reaction forces.

The dynamics admit the reduction of the model for two variables \((\theta, \psi) \)

\[
\begin{bmatrix}
 m_{11} & m_{12} \\
 m_{21} & m_{22}
\end{bmatrix}
\begin{bmatrix}
 \ddot{\theta} \\
 \ddot{\psi}
\end{bmatrix}
+ \begin{bmatrix}
 c_{11} & c_{12} \\
 c_{21} & c_{22}
\end{bmatrix}
\begin{bmatrix}
 \dot{\theta} \\
 \dot{\psi}
\end{bmatrix}
+ \begin{bmatrix}
 g_1 \\
 g_2
\end{bmatrix}
= \begin{bmatrix}
 u \\
 0
\end{bmatrix}
\]

We have to search for a forced periodic solution

\[
\theta^*(t), \quad \psi^*(t), \quad u^*(t)
\]

of this system, for which the constraints hold.
if the motion $[\theta^*(t), \psi^*(t)]$ is found then the disc will roll in one direction

\[\downarrow \]

the angle $\psi^*(t)$ can be used for representation instead of time: $\theta^*(t) = \Phi(\psi^*(t))$
Motion Generator

if the motion \([\theta^*(t), \psi^*(t)]\) is found then the disc will roll in one direction

\[\downarrow\]

the angle \(\psi^*(t)\) can be used for representation instead of time: \(\theta^*(t) = \Phi(\psi^*(t))\)

\[\downarrow\]

\[
\frac{d}{dt} \theta^* = \frac{d}{d\psi} \Phi \frac{d}{dt} \psi^*, \quad \frac{d^2}{dt^2} \theta^* = \frac{d}{d\psi} \Phi \frac{d^2}{dt^2} \psi^* + \frac{d^2}{d\psi^2} \Phi \left[\frac{d}{dt} \psi^* \right]^2
\]
if the motion \([\theta^*(t), \psi^*(t)]\) is found then the disc will roll in one direction

\[
\downarrow
\]

the angle \(\psi^*(t)\) can be used for representation instead of time: \(\theta^*(t) = \Phi(\psi^*(t))\)

\[
\downarrow
\]

\[
\frac{d}{dt} \theta^* = \frac{d}{d\psi} \Phi \frac{d}{dt} \psi^*, \quad \frac{d^2}{dt^2} \theta^* = \frac{d}{d\psi} \Phi \frac{d^2}{dt^2} \psi^* + \frac{d^2}{d\psi^2} \Phi \left(\frac{d}{dt} \psi^*\right)^2
\]

\[
\downarrow
\]

The passive dynamics for that motion

\[
m_{21} \ddot{\theta} + m_{22} \ddot{\psi} + c_{21} \dot{\theta} + c_{22} \dot{\psi} + g_2 = 0
\]

can be re-written as a differential equation – Motion Generator – for \(\psi\)-variable

\[
m_{21} \left[\Phi' \ddot{\psi} + \Phi'' \dot{\psi}^2 \right] + m_{22} \ddot{\psi} + c_{21} \Phi' \dot{\psi} + c_{22} \dot{\psi} + g_2 = 0
\]

\[
\left[\alpha(\psi, \{k_i\}) \ddot{\psi} + \beta(\psi, \{k_i\}) \dot{\psi}^2 + \gamma(\psi, \{k_i\}) = 0\right]
\]
Motion Planning Algorithm

- Choose a set of synchronization functions: $\theta = \Phi(\psi, k_1, \ldots, k_n)$

- Compute a family of Motion Generators parametrized by k_1, \ldots, k_n

- Search for constants k_1^*, \ldots, k_n^* and one of the MG solution $\psi^*(t)$ such that the pair

 \[\psi^*(t), \quad \theta^*(t) = \Phi(\psi^*(t), k_1^*, \ldots, k_n^*) \]

 meets the unilateral constraint

- If so, compute control variable $u^*(t)$ from the system dynamics

 \[m_{11} \ddot{\theta}^* + m_{12} \ddot{\psi}^* + c_{11} \dot{\theta}^* + c_{12} \dot{\psi}^* + g_1 = u \]

 Otherwise, modify the parameters and re-do the search.
Outline

Non-prehensile manipulation assignments
 Examples and features
 A “Butterfly” robot example

Steps in Motion Planning
 Choices of Coordinates
 Searching a Motion and a Motion Generator

Steps in Synthesis of Controller
 Transverse Dynamics and Transverse Coordinates

Concluding remarks
Analysis of (in)stability of the nominal periodic trajectory and its stabilization are defined by properties of the dynamics transverse to the orbit.

The system state vector has four components \([\theta, \psi, \dot{\theta}, \dot{\psi}]\) \(\Rightarrow\) the dimension of the transverse dynamics is three.

We need to define these quantities for \([\theta^*, \psi^*]\) and regulate them to zero.
Important Remarks

- Non-prehensile manipulation tasks for robotics require combination of:
 - symbolic tools for modeling the dynamics and contact conditions
 - identification and verification procedures for adjusting model parameters
 - optimization procedures for model based trajectory planning
 - control design methods and their stable numerical realization for orbital stabilization

- Solving the task allows students practicing in integration of several advanced computational tools for approaching one of challenging real-world problem in the lab

- Solving the task allows students learning advantages and weaknesses of analytical arguments, numerical procedures and their complementarity in applications

- Safety, safety and safety versus entertainment and challenge in student labs