Lars Risbo, Purifi, Denmark

Rapid Prototyping of unknown solutions to only partially known problems using Simulink and the SoC design flow
Overview

• Challenges
 » Need platform for fast idea/concept exploration, fast failure of unknown algorithms in a system with hi-speed, lo-latency feedback through the real world

• Solution
 » Matlab SoC design flow, Zedboard, custom board, auto-generation of Simulink, real-time tuning, Built-in Self Test (BiST)

• Results
 » Proof of concept, closed feedback loop, MLS analyzer as test case, ARM-FPGA comm is a bottleneck
Lars Risbo, Purifi

- Lars Risbo
 - Ph.D 1994: High-order sigma-delta modulation
 - Toccata acquired by Texas Instruments in 2000
 - TI-Fellow (2012), TI audio CTO (2013-2014)

- Purifi
 - Founded in 2015 by Bruno Putzeys, Peter Lyngdorf & Lars Risbo
 - Stealth mode, but focused on signal processing, system-level modeling/optimization/control
Matlab + Simulink: great RPT tool

• Instant success/failure! Size/cost not important
• Captures understanding of the problem, e.g. through models and data mining.
• Quick mock-up of solution ideas, Simulink mixes cont./discrete time blocks
• Great for visualization, team sharing
• Test-beds and analysis integrated
• Powerful automation of tasks, scripts, objects etc.
• High level of abstraction: scripts, vectorization, objects, operator overloading, hierarchical models etc.
H/W support/acceleration when

- The real-world is involved in low latency feedback loops at high processing speed
- Custom high-speed interfaces
 - ADCs /DACs, mixers etc.
- Acceleration using FPGA+Embedded processing
- Solution:
 - Matlab SoC flow
 - Automated code generation from Simulink
 - HDL coder for fast H/W
Purifi RPT Platform
Zedboard with an FMC daughter card
Even higher levels of abstraction

- Example: linear filter block in pure Simulink:
 - Just define the Transfer Function and go and tweak endlessly...
 - Change the TF from workspace directly

- Using HDL Coder:
 - Needs to be fixed-point, pick proper architecture and scaling, quite a barrier to creativity and speed

- Should be just as easy as in pure Simulink!

- More automation/abstraction:
 - Introducing the Hardware-Design & Control Object HaDeCo
HaDeCo

Matlab

HaDeCo object

Method 'build()'
Can use intelligent Choice of arch.

Method 'coefQuant'

Method 'dsim'
(sim with double)

Method 'autoScale'

Properties
Tag-id, SOS-coefs, Bitwidth, headroom, Coef-bitwidth, Input signal, fi-datatypes

Simulink

add_block() add_line() set_param()

fi() set_param()
sim() set_param('OutTypeStr',...)

Simulink Sub-system
Constructed & configured By the HaDeCo

Mult. instances

Dyn. link
BiST: 100MHz Logic Analyzer

Saves expensive logic analyzer
Maximum Length Sequence Generator

1-st pass success in HDL Coder, 100% reconfigurable using workspace/scripts
Used in an MLS network analyzer for system identification of the ADCs and H/W

\[y=\text{bitconcat}(u) \]
Path to ASIC/IC

- After prototyping → fast to real product
- HDL Code migrates to ASIC/IC
- Re-use of test-benches from prototyping
- Verification using HDL Verifier, co-simulations
- Automatic test vector generation
- Let the machine do the hard & repeated work
Conclusion

- The SoC flow expands Matlab/simulink into RPTing of fast real-time systems
- Fast idea exploration and fail/learn-cycles
- More abstraction/automation desirable for repeated tasks
 » Auto-generated/configured Simulink
- Real-time tuning, data analysis, self-test
- Fast-forward to real product (e.g. ASIC)
 » Re-use of test-beds, co-sim, vectors etc