Big Data, Big Transformation: Big Benefits for Large-Scale Engineering Products

Martin McDonald
Andrew Gorrie

October 2019
A top 10 Global Defence & Aerospace Company

Leonardo is a global high-tech company and one of the key players in Aerospace, Defence and Security worldwide.

2018 Results €bn

Revenue 12.2
Order backlog 36.1
New orders 15.1

Divisions

Helicopters
Aircraft
Aerostructures
Electronics
Cyber Security

Subsidiaries/Joint Ventures

DRS Technologies 100% Leonardo
Telespazio 67% Leonardo 33% Thales
Thales Alenia Space 67% Thales 33% Leonardo
MBDA 37.5% BAE Systems 37.5% Airbus Group 25% Leonardo
ATR 50% Leonardo 50% Airbus Group
Vitrociset 100% Leonardo

© 2019 Leonardo MW Ltd – All rights reserved
AGENDA

01 Background: What and Why Big Data?

02 Our Solution: Technologies and Architecture

03 A Future Towards DataOps...
Key Messages

Transformation | Then and Now - what does good look like?

Example of success | Technologies and Infrastructure

Future Looking | What will we do next?
Why Big Data?
Volume, Velocity, Value...
BIG DATA

Infrastructure / Techniques
Fuzzy transition point after which traditional storage and analysis techniques become inadequate

Investment
Data acquisition, storage, maintenance and exploitation is a business investment and should be treated as such

Value
The goal for Big Data is to extract and leverage the value from data
Backdrop - The Business is Changing

1. Next Generation Products
 New technologies, new hardware and increased complexity means more data than ever

2. New Development Strategy
 Data is now more valuable than ever with analysis for Model Driven Engineering favoured over costly experimental aircraft trials.

3. New Customer Environment
 Modern technologies and products increase the demand for product flexibility and so extensibility.

4. Multi-decade Programmes
 Long term effective management and utilisation of data is key to unlocking the business investment in data
Project Analysis: what was the Status Quo?

- Manual Processes
- Bespoke Tooling
- Network File Transfers
- Millions of Unmanaged CSV Files
- Data Stored on Network Drives
What does this mean for an engineer?

One year on a single project...

Mouse Clicks

264,160

To process data - before adding value

Equivalent 15 page Word Documents...

23,765,923

This would take over 90 years of continuous effort to read.

CSV Files

769,772

Of human readable radar data - i.e., not including the sensor data.
So what do we want?

Opportunities for improvement against traditional approaches.

Analytics

Make it easy for engineers to find the needle in the haystack...

Customise and Standardise

Make it easy for engineers to perform the modelling tasks they need to.
Keep analytics DRY

Accessibility

Make it easy for engineers to get the data they need.
Our Solution

Use Cases, Data Architecture, Hardware, Software.
KEY USE CASES

Data Management

Data volume - secure our investment in data for the long term

Advanced Search

Accessibility - right data for the right problem

Advanced Modelling

Deploy our MATLAB and Simulink models on large volumes of data - improved ability to *experiment* and *validate*
Data Architecture

Source Data

Big Data Platform

Data Consumers

Raw Data Data Engineering Refined Data Data Science Data Visualisation Data Governance

© 2019 Leonardo MW Ltd – All rights reserved
Data Architecture

Existing
- No platform
- Passive
- Disparate
Data Architecture

Source Data

Big Data Platform

Data Consumers

Raw Data → Data Engineering → Refined Data → Data Science → Data Visualisation → Data Governance

Sensor data, emails, test reports
Automated preparation, format conversions, scaling, standardisation
Data Architecture

Automated validation, testing, labelling
Data Architecture

Source Data

Raw Data
Data Engineering
Refined Data
Data Science

Big Data Platform

Data Visualisation
Data Governance

Data Consumers

Existing Models and MDE
Data Architecture

Source Data

- Raw Data
- Data Engineering
- Refined Data

Big Data Platform

- Data Science
- Data Visualisation
- Data Governance

Data Consumers

Policies, processes, metadata management
Solution: **BigData Platform as a Service**

Leonardo Big Data Platform

- **Number of Server Racks**
 - Space for expansion with COTS hardware.
 - **2**

- **TB of Total Installed Storage**
 - 300TB of usable storage after accounting for distributed file system
 - **900**

- **Number of Processing Nodes**
 - 3 management nodes, 2 edge, 15 workers
 - **20**

- **TB Memory**
 - 384GB of memory per processing node
 - **6**
Technology Stack

Extensible technology stack acting as a data and processing hub.

- **Hadoop**: Distributed file system for efficient storage access and processing.
- **Cloudera**: Managed solution to rapidly introduce the paradigm.
- **HUE**: Graphical interface to create dashboards - edit and search.
- **Solr**: Search and indexing engine for documents and data exploration.
- **Matlab & Simulink**: Core products in our Model Driven Engineering strategy and analytics.
- **Apache Spark**: Processing engine optimised for distributed processing in MATLAB, python, scala.
Processing Architecture...
From this...

How do I load lots of files?

what about different data formats?

how do I process huge volumes?
function errorCode = mapReduceFramework(binaryFile, configFolder, outputFolder, varargin)
%
% Input options
% 'RunAsLocal' - true/ false specify running the framework as a compiled
% local job (runs as LocalMapReduce by default)
% 'DefineJavaHome' - Override the path set for JAVA_HOME with a user specified value
%
%% Handle any optional arguments passed in
if nargin > 0
 varargin = inputParser();
end
addParameter(varargin, 'RunAsLocal', 'false', @ischar);
addParameter varargin, 'DefineJavaHome', '/usr/java/jdk1.8.0_101-amd64', @ischar
addParameter varargin, 'IntermediateFolder', '/data_staging_2/IntermediateFolder', @isfolder
parse varargin, varargin();
end

ingestionFolder = fileparts(binaryFile);

%% Setup Data Access Layer & Logging
dal = setup_dal(binaryFile, ingestionFolder, configFolder, varargin.Results.IntermediateFolder, outputFolder);
dal.LogLocation = setup_logging(ingestionFolder, binaryFile);
print_dal_debug_info(dal);

%% Set Environment variable settings up
Logger.TRACE('mapReduceFramework:Environment Setup', 'Setting Up Hadoop Environment');
setupHadoopEnv(varargin.Results.DefineJavaHome);

if isdeployed & strcmpi(varargin.Results.RunAsLocal, 'false')
 isDistributed = true;
else
 isDistributed = false;
end

fileSizeInMb = computeYarnContainerSize(dal.IngestionFolder, 'bin');
Logger.DEBUG('mapReduceFramework:config setup', 'Hadoop Map Container Size set to %d', fileSizeInMb)
config = setup_hadoop_config(fileSizeInMb); % Temporary files can be written to HDFS if this is a deployed Hadoop application

if varargin.Keys['-name'] == fileparts(binaryFile);
 tmpFolder = fullfile('hdfs://mapred1/tmp', varargin.Keys['-name']);
else
 tmpFolder = false;
end

config = 0;
What was the experience like with MATLAB?

Use Existing Models and Tools
A lot of our existing models and tools are written in MATLAB

Compile to Linux and Hadoop
Engineers can work on their environment of choice and relatively easily transition

Datastore abstraction
As well as deploying code, we can be flexible with data sources - local, HDFS...

Data Format Support
In 2019a and in 2020a, ability to write to the parquet file format
Key Challenges for the Project

01 Data Structures + Schema Evolution
Traditional development process results in rapidly changing data schemas/definitions

02 Knowledge and Skills
Data is not core competency - domain specialist engineers are extended to data management + manipulation.

03 Data Governance
Data owners are not always formalised, metadata capture is often not part of the workflow so is extra.

04 Encourage Thinking Globally
Traditional usage patterns for data involve massive data reduction at each stage.
Achievements

Benefits so far

Supporting Multiple Programmes with different needs

Processing Times of Minutes, not days

Improved Model Driven Engineering capability with deployment of MATLAB models
3 Future

What's next.
A great model isn't enough...
End to end solution to support a data-driven workflow

Towards DataOps

DataOps is an automation methodology used to improve the quality and reduce the cycle time of data analytics.

Access and Explore Data

Clean and Validate

Experiment and Evaluate

Visualise and Report

Integrate, Deploy and Monitor
Future Technologies...

kafka
Streaming
Live Stream testing events from our lab facilities to engineers PCs
Points to take away...
Foundation for model driven engineering workflows.

1. MATLAB
Abstractions are powerful to get us going

2. Engineers can work in their preferred environment and deploy to scale

3. Spark & streaming are the future for interactive engineering development
THANK YOU FOR LISTENING!

Questions?