Evaluating the Production Consequences of Design Decisions using MATLAB and Simulink

Prof. Leon McGinnis (Georgia Tech ISyE)

Dr. Tim Sprock (now at NIST)

Dr. George Thiers (now at ModGeno)
Integrated Product-Process Development
A Fundamental Obstacle to IPPD

Tool support for the design and operation of industrial engineering systems (manufacturing systems, supply chains, sustainment systems, warehouses, distribution centers, ...) is far less sophisticated than for products themselves.

An analogy: When designing a part in a CAD environment, finite-element analysis is push-button accessible – a mesh and the mathematical analysis model can be automatically generated.

For operations research analysis of industrial engineering systems (discrete-event simulation, statistics in support, optimization on top), we effectively create the mesh and write the analysis code by hand, each and every time, even to answer routine and well-understood questions which we have seen before and know how to answer.
A Fundamental Obstacle to IPPD

• Discrete-event simulation is one of several analysis methodologies that can be used to evaluate “produceability”.

• Many industrial companies already use these analysis methodologies in the status quo.

• MATLAB & Simulink have robust capabilities for these analysis methodologies. The time, cost, and expertise requirements for their usage, however, can be prohibitive.
What Would Better Tool Support Enable?

• Predicting the behavior and performance of manufacturing process and facility designs, quickly and at very low cost.

• Receiving fast and frequent feedback about the production consequences of design decisions.

• Extending Value Stream Maps into variability exploration tools, such that standard hours, inventory buffers, and supplier delivery schedules can be chosen for robustness.

• Considering more improvement ideas and alternatives, evaluating more production scenarios and their impacts, and exploring more of a production system’s design space.
Results: Manufacturing Demo
Results: Manufacturing Demo

- manufacturing
 - Job
 - Operation -> Job
 - WorkOrderType
 - WorkOrderReleaseProcess
 - RawMaterialType
 - RawMaterialSupplyProcess
 - MobileResourceType
 - MobileResourceSharingProcess
 - Facility
 - Cell
 - Workstation
 - Product
Results: Manufacturing Demo
Results: Manufacturing Demo
Results: Manufacturing Demo
Results: Manufacturing Demo

System Definition: Manufacturing_v12

System Instance: man12_OneFacilityOneProduct_GenericLessFidelity

Question: What is the (expected) throughput of a cell? **How to Answer:** Discrete Event Simulation

Table:

<table>
<thead>
<tr>
<th>Job</th>
<th>time-mean (minutes)</th>
<th>time-stdev (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Job2</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Job3</td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>Job4</td>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>Job5</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Job6</td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>Job7</td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>Job8</td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>Job9</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Job10</td>
<td>1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Results: Manufacturing Demo
Demonstration of Efficacy

To demonstrate an improvement in the accessibility and affordability of discrete-event simulation analysis for production systems, in one hour of work, I evaluated 100 different alternatives for a production system and answered several questions about each:

- Change resource numbers
- Change order release schedule
- Change material resupply variability
- Change process plan fidelity/level of abstraction
- Change workstation batching rules
- Change a process plan’s routing through a facility
- Change the facility executing a process plan
- Change other process plans executing concurrently in a facility

Parametric Changes

Structural Changes
Results: Manufacturing Demo

System Definition: Manufacturing_v12

System Instance:
- man12_OneJob_Elimentary
- man12_OneJob_LessFidelity
- man12_OneJob_MoreFidelity
- man12_OneFacility_OneProduct_Simple
- man12_OneFacility_OneProduct_GenericLoosFidelity
- man12_OneFacility_OneProduct_GenericMoreFidelity
- man12_OneFacility_TwoProducts_Simple
- man12_OneFacility_TwoProducts_Generic
- man12_OneFacility_TwoProducts_Generic
- man12_TwoFacilities_OneProduct_Generic

Question:
How To Answer:
Solver:
Formulate and Solve
Results: Manufacturing Demo

![Excel sheet with graphs and data](image-url)
Results: Air Cargo Sort Hub Demo
Results: Air Cargo Sort Hub Demo

- Airport Environment
 - Ramp
 - Gate
 - Asset Type
 - Flight
 - Work Card
Complete Domain Switch, Same Analysis Generators

- manufacturing
 - Job
 - Operation -> Job
 - WorkOrderType
 - WorkOrderReleaseProcess
 - RawMaterialType
 - RawMaterialSupplyProcess
 - MobileResourceType
 - MobileResourceSharingProcess
 - Facility
 - Cell
 - Workstation
 - Product

- AirportEnvironment
 - Ramp
 - Gate
 - AssetType
 - Flight
 - WorkCard
Results: Air Cargo Sort Hub Demo

PREDICT: What is the (expected) Cycle Time Missed (Deadline Fraction) for a collection of (Flight) at a certain (Ramp)?
Results: Air Cargo Sort Hub Demo
To demonstrate that the methodology is more general than just the manufacturing domain and also more general than any particular analysis solver, use the same tool to quickly evaluate 50 different alternatives for an air cargo sort hub, and answer several questions about each:

- Change resource numbers
- Change flight schedule
- Change parking plan
- Change airport
- Change maintenance profile (more preventative = less unplanned)
- Change maintenance rules

Demonstration of Efficacy

Parametric Changes

Structural Changes
Results: Air Cargo Sort Hub Demo
Results: Air Cargo Sort Hub Demo

<table>
<thead>
<tr>
<th>InstanceID</th>
<th>scheduledArrivalTime-mean</th>
<th>scheduledArrivalTime-stdev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight1</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>Flight2</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>Flight3</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>Flight4</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>Flight5</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>Flight6</td>
<td>110</td>
<td>15</td>
</tr>
<tr>
<td>Flight7</td>
<td>120</td>
<td>15</td>
</tr>
<tr>
<td>Flight8</td>
<td>130</td>
<td>15</td>
</tr>
<tr>
<td>Flight9</td>
<td>140</td>
<td>15</td>
</tr>
<tr>
<td>Flight10</td>
<td>150</td>
<td>15</td>
</tr>
<tr>
<td>Flight11</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>Flight12</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>Flight13</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>Flight14</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>Flight15</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>Flight16</td>
<td>110</td>
<td>30</td>
</tr>
<tr>
<td>Flight17</td>
<td>120</td>
<td>30</td>
</tr>
<tr>
<td>Flight18</td>
<td>130</td>
<td>30</td>
</tr>
<tr>
<td>Flight19</td>
<td>140</td>
<td>30</td>
</tr>
<tr>
<td>Flight20</td>
<td>150</td>
<td>30</td>
</tr>
</tbody>
</table>
Results: Air Cargo Sort Hub Demo
Results: Air Cargo Sort Hub Demo

System Definition
- **AirportEnvironment**
 - Ramp
 - gate: EReference [0..*]
 - flight: EReference [0..*]
 - asset: EReference [0..*]
 - Gate
 - locX: EAttribute [0..1]
 - locY: EAttribute [0..1]
 - AssetType
 - numberAvailable: EAttribute [0..1]
 - Flight
 - scheduledArrivalTime-mean: EAttribute
 - scheduledArrivalTime-stdev: EAttribute
 - time-units: EAttribute [0..1]
 - scheduledDepartTime: EAttribute
 - gateAssignment: EReference [0..1]
 - requiredRefuelTime-mean: EAttribute
 - requiredRefuelTime-stdev: EAttribute
 - requiredRefuelAssets: EAttribute [0..1]
 - containerUnloadTime-mean: EAttribute

System Instance
- **airport4_IND**

Question
PREDICT: What is the expected (Cycle Time) Missed (Hours To Arrival)?

Solve
- **Solver:** MATLAB
- **Formulate and Solve**
Results: Air Cargo Sort Hub Demo
Results: Air Cargo Sort Hub Demo
Results: Value Stream Mapping Demo
Results: Value Stream Mapping Demo

- ValueStreamMapping
 - Process
 - Customer
 - Supplier
 - DedicatedProcess
 - SharedProcess
 - DataBox
 - WorkCell
 - Material
 - Item
 - Inventory
 - Shipment
 - PushItemFlow
 - Supermarket
 - PullItemFlow
 - FIFO
 - FIFO
 - SafetyStock
 - ExternalShipment
 - General
 - Operator
 - Timeline
 - Information
 - KanbanCard
 - ProductionControl
 - ItemRelease
 - ResourceShare
Complete Domain Switch, Same Analysis Generators

- manufacturing
 - Job
 - Operation -> Job
 - WorkOrderType
 - WorkOrderReleaseProcess
 - RawMaterialType
 - RawMaterialSupplyProcess
 - MobileResourceType
 - MobileResourceSharingProcess
 - Facility
 - Cell
 - Workstation
 - Product

- AirportEnvironment
 - Ramp
 - Gate
 - AssetType
 - Flight
 - WorkCard

- ValueStreamMapping
 - Process
 - Customer
 - Supplier
 - DedicatedProcess
 - SharedProcess
 - DataBox
 - WorkCell

- Material
 - Item
 - Inventory
 - Shipment
 - PushItemFlow
 - Supermarket
 - PullItemFlow
 - FIFOLane
 - SafetyStock
 - ExternalShipment

- General
 - Operator
 - Timeline

- Information
 - KanbanCard
 - ProductionControl
 - ItemRelease
 - ResourceShare
Results: Value Stream Mapping Demo
Results: Value Stream Mapping Demo

Information flows

Material flows

Lead time ladder

<table>
<thead>
<tr>
<th>Process</th>
<th>Lead Time</th>
<th>C/T</th>
<th>C/D</th>
<th>Uptime</th>
<th>Shifts</th>
<th>Sec Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>300 sec</td>
<td>300</td>
<td>60 min</td>
<td>80%</td>
<td>2 Shifts</td>
<td>24,000 sec available</td>
</tr>
<tr>
<td>B</td>
<td>45 sec</td>
<td>45</td>
<td>10 min</td>
<td>50%</td>
<td>2 Shifts</td>
<td>24,000 sec available</td>
</tr>
<tr>
<td>C</td>
<td>300 sec</td>
<td>300</td>
<td>240 min</td>
<td>100%</td>
<td>2 Shifts</td>
<td>24,000 sec available</td>
</tr>
</tbody>
</table>

Production lead time = 14 days

Processing time = 565 sec
Results: Value Stream Mapping Demo

System Definition: ValueStreamMapping

- **General/Operator**
 - Production
 - Inventory
 - Shipping
 - PullItemFlow
 - PushItemFlow
 - PullItemFlow
- **Material**
 - Item
 - Inventory
 - Shipment
- **WorkCell**
 - DedicatedProcess
 - Workstation
 - DataBox
 - Resource
 - WorkCell
- **Operator**
 - ProductionOperator
- **Information**
 - ProductionControl
 - Inventory
 - KanbanCard
 - Instruction
 - ItemRelease
 - Kanban
 - KanbanCard
 - ProductionControl

System Instance: VSM_Example1

<table>
<thead>
<tr>
<th>InstanceID</th>
<th>Production/Process</th>
<th>cycleTime (Float)</th>
<th>cycleTimeStdDev (Float)</th>
<th>timeUnits (toward)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProcessA</td>
<td>Widget</td>
<td>5</td>
<td>0.5</td>
<td>12</td>
</tr>
<tr>
<td>ProcessB</td>
<td>0.75</td>
<td>0.075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProcessC</td>
<td>5</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: Value Stream Mapping Demo

[Image of a Value Stream Mapping tool interface with data on processes and times]
Results: Value Stream Mapping Demo
Results: Value Stream Mapping Demo
Results: Value Stream Mapping Demo

System Definition: ValueStreamMapping

<table>
<thead>
<tr>
<th>System Definition</th>
<th>System Instance</th>
<th>Save System Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ValueStreamMapping</td>
<td>VSM_Example1</td>
<td></td>
</tr>
</tbody>
</table>

System Instance

<table>
<thead>
<tr>
<th>General/Operator</th>
<th>General/Timeline</th>
<th>Information/ItemRelease</th>
<th>Information/Kanban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information/ProductionControl</td>
<td>Information/ResourceShare</td>
<td>Material/External/Shipments</td>
<td>Material/PushFlow</td>
</tr>
<tr>
<td>Material/Inventory</td>
<td>Material/Item</td>
<td>Material/Pull/Flow</td>
<td>Material/Flow</td>
</tr>
<tr>
<td>Material/SafetyStock</td>
<td>Material/Upload</td>
<td>Material/Supermarket</td>
<td>Process/Supplier</td>
</tr>
</tbody>
</table>

Material

- Item
- Inventory
- Shipment
- Pull/ItemFlow
- Supermarket
- Pull/ItemFlow
- FIFO
- SafetyStock
- External/Shipments

General

- Operator
- Timeline

Information

- KanbanCard
- ProductionControl

Production Process

<table>
<thead>
<tr>
<th>InstanceID</th>
<th>productionItem</th>
<th>cycleTime</th>
<th>cycleTimeStdDev</th>
<th>timeUnits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProductionProcess</td>
<td>Widget1</td>
<td>5</td>
<td>0.5</td>
<td>minutes</td>
</tr>
<tr>
<td>ProcessA</td>
<td>0.75</td>
<td>0.075</td>
<td>minutes</td>
<td></td>
</tr>
<tr>
<td>ProcessC</td>
<td>5</td>
<td>0.5</td>
<td>minutes</td>
<td></td>
</tr>
<tr>
<td>Shipping</td>
<td>120</td>
<td>12</td>
<td>minutes</td>
<td></td>
</tr>
</tbody>
</table>

Question:

Predict: What are a Process' predicted performance?

How To Answer: Discrete Event Simulation

Solver: MATLAB

Formulate and Solve
Summary

• Industrial Engineering is a domain that can benefit from improved tool support, we’re creating it, and MATLAB and Simulink are an integral part of the solution.
 • **Minimum**: MATLAB, Simulink, SimEvents.
 • **Recommended**: Statistics Toolbox, Stateflow, Parallel Computing Toolbox.
 • **Advanced**: Global Optimization Toolbox.

• Our contribution is Industrial Engineering domain knowledge, and expertise with modeling and model transformations. The MathWorks’ contribution is analysis languages, solvers, and interpretation and visualization of results.

• Should you expect an “Evaluate Produceability” button to appear in your CAD tools in the next few months? This tool is a big step in that direction, although other puzzle pieces are needed to make it truly push-button.
Backup
In the status quo, analysts commonly **hand-build custom analysis** to answer specific questions about specific systems. Automation can be added to make the formulations repeatable, but the issue remains that there is a unique transformation for every (domain, analysis) pair, severely limiting ROI of writing and maintaining each one.
We spent years searching for a perfect Industrial Engineering system model:

How to make a model robust and reusable? **Make it abstract.**

How to make a model user-friendly and accessible? **Make it concrete.**
The Solution

(1) Ask a question about a system (usually related to a decision to be made).

(2) The question’s subject is a system model, whether informal or formal, which may require enhancement.

(3) Identify and build an answering analysis.

(4) Solve the analysis model for an answer.

(5) Interpret results and pose new questions.
The Solution

1. Ask a question about a system.

2. The question's subject is a system model, which includes both a schema and a conforming instance model.

3a. Given the question, abstract what's relevant in the system model.

3b. Map from a question about the system to a question about the abstraction.

4. Given the abstract system and the question, identify and construct an answering analysis.

5a. If the answer enhances system knowledge, capture it in the system model.

5b. Interpret results and pose new questions.

Analysis Model

Answer
• The behavioral model is fundamentally different.

• We care a lot more about instance data. An aircraft or satellite has a controlled number of subsystems (which can each be quite complex; it's the number we care about) - one avionics system, one guidance and control system, one power system, ... A manufacturing system may have dozens of facility instances, hundreds of process plan instances, thousands of workstations, and tens of thousands of resource instances.
• The subset of the language for activity modeling is very abstract, similar to the *Process Network* definition in our back-end bridging abstraction model. However, we never intended end-users to author directly in our bridging abstraction model, just map to it.

• There’s no facility for user customization, e.g. define a language within the language, as SysML structural modeling permits.

• It stores information at the wrong levels of abstraction. A specific process structure is stored at schema-level, and also elements' parameterization are stored at the schema-level, for example actions' token types and quantities input & output.

• SysML has limited capabilities for modeling structure-behavior integration. In version 1.3, a *Block*'s links to behavior are *Classifier Behavior, Owned Behavior*, and *Owned Operation*. How to express capability, assignment (both static and time-varying, the latter sequencing and scheduling)?