Automotive ASIC Model Based Design

Jamie Haas
Director of Design Engineering
Advanced Sensor Technology Business Unit
Sensor Applications

• **Automotive**
 • Steering
 • Engine
 • Transmission
 • Hybrid/Electric Motor
 • Seat Belt
 • More!

• **Consumer Applications**
• **Industrial Controls**
• **Current Sensing**
An Overview of Allegro’s MBD Success

- We Started taking a serious look at Simulink MBD for ASIC Development in 2014

- Team Adoption hit the “knee” of the curve in 2015

- A total of 8 device digital control systems and signal paths auto generated from Simulink
 - Interpolation engines
 - Digital filters
 - Signal Processing Algorithms
 - Digital PLL’s
 - Digital Sigma Delta DAC’s

- Silicon Evaluation has demonstrated ZERO bugs from auto generated code to date.
The Evolution of Allegro’s Model Based Design (MBD) Flow

The Dark Ages

The Enlightenment

The Industrial Period

Exponential Efficiency

Digital Filter Code Auto-gen

Simulink Signal Path HDL Auto-gen

Simulink Signal Path and Fixed Point Modeling

Simulation, Scripting and Methodology Improvements

Automation, Code Gen and UVM Verification Integration

Automotive
I just found out my algorithm is wrong and we are releasing in 2 weeks!!
The Enlightenment: Model Based Design

- Architecture and Algorithm Design Evolve into Executable Specifications
- Front load testing and verification
- Development is “parallelized”
- Continuous Equivalency Testing is utilized
- ... And of course auto-generated production code
ASIC Sensor Components
Mixed Signal ASIC Components

- Power System
- Analog System
- Pad and Power Ring
- Chip I/O
- Transducer
- Digital System
 - Bias and Support
 - Memories
- Digital Top
 - Standard RTL
 - Auto-generated RTL
Precision Automotive Magnetic Sensor

- **Analog Front End**
 - Hall plates w/ coils
 - FE Amp
 - ADC
 - BW select
 - Coil Calibration

- **Analog Support**
 - Clock Generator
 - Voltage Ref
 - Temp Sensor

- **Voltage Ref Regulators/POR**
 - Level Detect
 - ESD

- **Master Control**
 - Compensiation

- **Memory**
 - EEPROM
 - Charge Pump
 - Serial Interface
 - Master Control

- **Digital Controller**
 - Analog BIST
 - EEPROM BIST
 - Logic BIST
 - PWM/SENT

- **Digital Output**
 - Output Driver
 - Slew Control
 - ESD
 - Serial RX

- **GND**

- **VCC**

- **OUT**
ASIC Sensor Simulink Modeling

- How do we handle the memory (EEprom configuration)

- Simulink Model Types
 - Spec Model
 - HDL Gen: Stateflow
 - HDL Gen: Matlab Function
 - Validation Model
Memories: Automatic Register Generation

- The Word based register map is the single point for documenting all registers.
- RTL is generated using the Agnisys IDesignSpec tool.
- Register models required by DV (Design Verification) are generated using the Agnisys IDesignSpec tool.
Memories: Link Simulink Model to Memory Map

- Custom Inports and Outports with attributes where created
- Additional attributes are used by Matlab Report Generator for automated document generation
A Spec Model is the “golden model” of what you are trying to achieve.
- Easy to read
- Simple as possible

Requirements are linked to the spec models

Avoid
- HDL optimizations

Keep data types as doubles where possible

Using DPI-C, System Verilog models are created from the spec models
The Power of Stateflow

- Stateflow is a universal tool
 - Stateflow allows for efficient control logic design that is self documenting and translates to efficient RTL(**)
 - SAR ADC Controller
 - Multiplier Sharing
 - Stateflow can be used as a verification driver (handles asynch events)
 - Stateflow can be used to model analog switched capacitor charge transfer!
 - Stateflow charts can be embedded within Stateflow charts
Flexibility of Matlab Function Block

- Code generation is not limited to Simulink fixed point and Stateflow
- Many functions and operations are more efficiently written as a Matlab function
- Floating point functions
 - coder.approximate
- Simulink is your canvas
A validation model generates “evidence” that specific requirements are met
- Automated regressions require that a pass/fail criteria be used

- Asserts are your friend!
 - We hope to see the asserts pass through to the auto generated HDL very soon!
Simulink Code Generation for Digital
(and Analog ?!)
Digital Example: SDM DAC

- Fixed Point Modeling is VERY powerful in Simulink
- Fixed point optimization and area/accuracy tradeoffs are rapidly analyzed
Digital DAC: Code Generation Video
Simulink Analog Models using DPI-C: Passive Filter with Noise and Delay

- Model analog components based on functional requirements, not implementation!

- Generate C code from these models to be used as “real number models” in circuit simulator and verification environment

- This will allow for traceability and equivalence checking under the ISO26262 Automotive Specification.

- Analog designers will feel a strong attraction to SimElectronics. Leave the implementation for the circuit simulator (Cadence, etc.)
Generate the System Verilog / C-code Model

- Select “systemverilog_dpi_ert.tlc”
- Files to be generated
 - Model_name.sv “wrapper”
 - Model_name.so
The System Verilog Wrapper and the System Object Functions

Within AMS Options, add the path to the irun_options file
“Subsystem_dpi” is a System Verilog “Wrapper” that calls the compiled C code generated from Simulink.
- The Simulink Model can be changed, the C code regenerated and the Cadence setup needs no update!
- Makefile is automatically called upon Simulink Code Generation.

Notice: simulation time difference when this resistor is connected. (Still “fast” but much slower...)

Note: Sample Clock must match discrete sample period of Simulink model.
Cadence Simulation of Simulink “C” Model and Ideal RC
Simulink Analog Models using DPI-C: Continuous Time Sigma Delta ADC

- Make sure and "comment out" any elements in the subsystem that you do not want in the generated code.
 - Those elements are shown inside the red box.
ASIC MBD Summary
Present and Future

- Simulink and Matlab have been instrumental in the development of an agile Automotive Mixed Signal ASIC Sensor Flow
 - High level model exploration allows for accelerated insights and convergence on architecture and algorithms
 - Traditional duplication efforts (model – spec – another model) are minimized
 - Upfront models expedite the verification efforts and front load issue discovery
 - Powerful Real Time Simulation Platforms (Speed Goat) allow for testing algorithms in the lab before design team is heavily engaged!
 - Powerful modeling, automated code generation and robust traceability are paving the way for agile development in an ISO26262 world!
Thank You!

For more information:
http://www.allegromicro.com

Email:
jhaas@allegromicro.com