Unleashing the Power of FPGAs through Model-Based Design

Nabeel Shirazi
Senior Director
System Level Design Tools
Intersection of Applications, Devices, and Tools

- Productivity
- AI
- 5G
- Early AI
- 4G
- 3G

Application Complexity
Device Capability

Programming Models

- Virtex-2 FPGAs
- Kintex-7 FPGAs
- 4G
- 5G Early AI
- Zynq UltraScale+ MPSoC / RFSoC
- ACAP
- ?

1998

2000

2010

2020

2030
In the Beginning: FPGAs for 3G Wireless Radios

• Key application: Digital Baseband Pre-Distortion
 • Enables use of cost effective non-linear power amplifiers
 • Lowers spectral noise floor

• Why FPGAs:
 • Custom memory hierarchy and parallel processing
 • Enabled 3X cost reduction vs. analog implementations

• Programming Model:
 • Simulink for algorithm development
 • Traditional FPGA tools for implementation
Gap between Simulink and FPGAs

System Architects & Algorithm Designers

Simulink

Hardware Designer

Manual translation

RTL code

FPGA Tools

FPGA
Bridging the Gap between Simulink and FPGAs

System Architects & Algorithm Designers

Simulink with Xilinx System Generator Blockset

Hardware Designer

Manual translation

RTL code

FPGA Tools

FPGA
Why Model-Based Design

- Natural way to express parallelism
- Debug and test at the model level
- Reduce number hardware iterations
- Share models across different disciplines – FPGA, RF, Communications

BAE Systems Achieves 80% Reduction in SW-defined Radio Development Time

645 hrs:
VHDL Expert using traditional design flow

vs.

46 hrs:
Engineer with Simulink + System Generator flow
Meeting Today’s Challenges

- 1998: 3G
- 2010: 4G
- 2020: 5G
- 2030: ?

- Productivity: Virtex-2 FPGAs, Kintex-7 FPGAs, Zynq UltraScale+ MPSoC / RFSoC, ACAP
- Application Complexity: Model Composer, SysGen SSR, 5G Early AI, AI

- Programming Models: RTL, SysGen

- Device Capability: Virtex-2 FPGAs, Virtex-2 FPGAs, Kintex-7 FPGAs, ACAP
5G Wireless Radio Challenges

5G Complexity is 100X 4G

Still Evolving Standard

ETRI RWS-150029,
5G Vision and Enabling Technologies: ETRI Perspective 3GPP RAN Workshop
Phoenix, Dec. 2015
http://www.3gpp.org/ftp/tsg_ran/TSG_RAN/TSGR_70/Docs

New Technologies in 5G

> Multi-user Massive MIMO
> New beamforming technology
> Millimeter wave transmission
Remote Radio Head & Fixed Wireless Access
Enabling Massive-MIMO 2D Antenna Arrays

Wireless Backhaul
Enabling Throughput for mmWave Transmission

Baseband
Maximizing Throughput in Baseband Pools

Zynq RFSoC Devices for 5G Applications

RFSoC
Heterogeneous Multi-processing

Processing System
- Quad-Core ARM® Cortex™-A53
- Memory Sub-System
- System Functions
- Dual-Core ARM® Cortex™-R5
- Platform Management Unit
- Config and Security

Programmable Logic
- 33G Transceivers
- PCIe® Gen4
- UltraRAM
- 100G Cores

Analog-to-Digital Converters
Up to 4 GSPS

Soft Decision Forward Error Correction

Digital-to-Analog Converters
Up to 6.4 GSPS
5G Design in MATLAB & Simulink

5G Toolbox
- End-to-End Link-Level Simulation
- Waveform Generation and Analysis
- Golden Reference Design Verification

Avnet RFSoC Explorer
- Generate stimuli
- Setup of device
- Analyze signals from H/W
Super Sample Rate Processing in SysGen

Before:

Input Serial Data Rate of 1.5 GHz

SSR = 3 Device Data Rate: 500MHz

After:

With SSR support of vectorized blocks
Zynq MPSoC for Embedded Vision

- Power budget: 5W
- Cost budget: $10-$40

Driver Assistance Example:

Sensor input → Deep learning based perception → Path planning → Automatic braking

Latency < 30 ms
Moving Up in Abstraction: Model Composer Blockset with OpenCV
Machine Learning Inference Challenges

- The rate of AI innovation
- Performance at low latency
- Low power consumption
- Whole app acceleration
Only Adaptable Hardware Addresses Inference Challenges

- Custom data flow
- Custom memory hierarchy
- Custom precision
Example Domain Specific Architecture: xDNN

Custom data flow
Optimized for latest CNN

Custom memory hierarchy
Optimized on-chip memory

Custom precision
Int8
Adaptable Compute Acceleration Platform
A new class of devices for today and tomorrow’s challenges
AI Engines

- Optimized for AI Inference and Advanced Signal Processing Workloads

- >1GHz VLIW/SIMD vector processor cores
- Massive array of interconnected cores with local memory
- Coupled to adaptable hardware enabling custom memory hierarchy
- Programmable with MATLAB/Simulink via Model Composer
Low-Latency CNN Inference Performance

Pruning Technology

1.3x-8x

Performance improvement based on the network

Sources: Alveo - Published (INT8); Versal - Projected (INT8), 65% PL reserved for whole application; GPU 1 - P4 Published (INT8); GPU 2 - V100 Published (FP16/FP32); GPU 3 - T4 Projected
Future of Model-Based Design for ACAPs

Joint MathWorks & Xilinx Solution

- Cloud Based Design Entry for MATLAB & Simulink
- System Level Optimization, e.g. Bandwidth, Latency and Power; Cloud vs. Edge
- Hardware Accelerated Simulation
- Higher Level of Abstraction
- Wide Range of Domain Specific Architecture Overlays

Deployable design that uses ALL compute resources of an ACAP for Edge and Cloud
Xilinx will continue to invest in Model-Based Design as a natural, productive on-ramp to our devices.

Adaptable devices have a clear advantage in ML, ADAS and 5G to meet performance, latency and power requirements.

The intersection of tools, silicon and platforms provides an inflection point for AI adoption.