MATLAB EXPO 2019

Deep Learning and Reinforcement Learning Workflows in A.I.

Abhijit Bhattacharjee

Why MATLAB for Artificial Intelligence?

MATLAB EXPO 2019

Artificial Intelligence

Development of computer systems to perform tasks that normally require human intelligence

MATLAB EXPO 2019

A.I. Applications

Object Classification

Signal Classification

Speech Recognition

Automated Driving

Predictive Maintenance

Stock Market Prediction

Artificial Intelligence

 Development of computer systems to perform tasks that normally require human intelligence

Machine Learning

Machine Learning and Deep Learning

Machine Learning and Deep Learning

Machine Learning and Deep Learning

MATLAB EXPO 2019

Deep Learning

- Subset of machine learning with automatic feature extraction
 - Learns features and tasks directly from data
 - More Data = better model

Machine Learning

Deep
Learning

Deep Learning Uses a Neural Network Architecture

Deep Learning Datatypes

Image

Signal

Numeric

happy these change worth though better other Though death whose shall glass hours great black Shall treatment found with there significantly truth there think decay whose state false every could since significantly truth there think decay whose state false every could since significantly truth there think decay whose state false every could since significantly treatment friend prove looks Whilst Treatment friend prove looks whilst treatment friend prove love's proud thought night sweet love's proud might Against Time's grace's thoughts youth thing

Text

Deep Learning Workflow

Prepare Data

Data access and preprocessing

Ground truth labeling

Why MATLAB for A.I. Tasks?

Increased productivity with interactive tools

Generate simulation data for complex models and systems

Ease of deployment and scaling to various platforms

Full A.I. workflows that cannot be easily replicated by other toolchains

MATLAB EXPO 2019

Why MATLAB for A.I. Tasks?

Increased productivity with interactive tools

Labeling

Training

Model Exchange

Full A.I. workflows that cannot be easily replicated by other toolchains

"I love to label and preprocess my data"

~ Said no engineer, ever.

Labeling for deep learning is repetitive, tedious, and time-consuming...

but necessary

Signal Labeler – annotate signals with labels/sublabels, export to workspace for training

Define Labels

View properties of labels

Interactively Label Signals

User Story – Veoneer (Autoliv)

Automotive

- Software and hardware for active safety, autonomous driving, occupant protection, and brake control
- Building radar sensor check accuracy using LiDAR-based verification
- Human analyzes hours of recorded data
- Used MATLAB to semi-automate labeling and tracking of 3D LiDAR point clouds.

Manual Labeling for 25 events took over 20 minutes. After full automation with MATLAB's tools, it took 5 minutes

Transfer Learning with Pre-trained Models

Inception-v3

ResNet-101

VGG-16

Inception-ResNet-v2

ResNet-18

GoogLeNet

DenseNet-201

VGG-19

SqueezeNet

AlexNet

ResNet-50

Import & Export Models Between Frameworks

Keras-Tensorflow Importer

Caffe Model Importer

ONNX Model Converter

Model Exchange with MATLAB

Why MATLAB for A.I. Tasks?

Increased productivity with interactive tools

Generate simulation data for complex models and systems

Ease of deployment and scaling to various platforms

Full A.I. workflows that cannot be easily replicated by other toolchains

Why MATLAB for A.I. Tasks?

Generate simulation data for complex models and systems

Reinforcement Learning

Full A.I. workflows that cannot be easily replicated by other toolchains

Reinforcement Learning vs Machine Learning vs Deep Learning

Reinforcement Learning vs Machine Learning vs Deep Learning

Reinforcement learning:

Learning through trial & error [interaction]

 It's about learning a behavior or accomplishing a task

What is Reinforcement Learning?

- What is Reinforcement Learning?
 - Type of machine learning that trains an 'agent' through repeated interactions with an environment
- How does it work?
 - Through a trial & error process that uses a reward system to maximize success

Reinforcement Learning enables the use of Deep Learning for Controls and Decision Making Applications

Controls

Robotics

A.I. Gameplay

Autonomous driving

How Does Reinforcement Learning Work?

A Practical Example of Reinforcement Learning Training a Self-Driving Car

- Vehicle's computer learns how to drive...
 (agent)
- using sensor readings from LIDAR, cameras,...
 (state)
- that represent road conditions, vehicle position,...(environment)
- by generating steering, braking, throttle commands,...
 (action)
- to avoid collisions and lane deviation... (reward).

The goal of Reinforcement learning is for the agent to find an optimal algorithm for performing a task

MATLAB EXPO 2019

Deep Networks are commonly found in the agent, because they can model complex problems.

- Turn left
- Turn right
- Brake
- Accelerate

Reinforcement Learning Workflow

Why MATLAB and Simulink for Reinforcement Learning?

Virtual models allow you to simulate conditions hard to emulate in the real world.

Using MATLAB and Simulink for Reinforcement Learning

 Reinforcement learning is a dynamic process

- Decision making problems
 - Financial trading, calibration, etc.
- Controls-based problems
 - Lane-keep assist, adaptive cruise control, robotics, etc.

Why MATLAB for A.I. Tasks?

Increased productivity with interactive tools

Generate simulation data for complex models and systems

Ease of deployment and scaling to various platforms

Full A.I. workflows that cannot be easily replicated by other toolchains

MATLAB EXPO 2019

Why MATLAB for A.I. Tasks?

Increased productivity with interactive tools

Generate simulation data for complex models and systems

Code | Ellibeaded | Ellicipiise

Ease of deployment and scaling to various platforms

Full A.I. workflows that cannot be easily replicated by other toolchains

Deployment and Scaling for A.I.

Embedded Devices – Automatic Code Generation

Deploying Deep Learning Models for Inference

GPU Coder is more than twice as fast as other compiled deep learning frameworks

Intel® Xeon® CPU 3.6 GHz with NVIDIA® Titan V GPU - NVIDIA libraries: CUDA® – cuDNN - Frameworks: TensorFlow™ 1.13.0, PyTorch 1.1.0 – ResNet-50 pre-trained model

Enterprise Deployment

Run thousands of simulations in parallel with MATLAB Parallel Server to save hours of training time.

Enterprise Deployment

Deployment to the cloud with MATLAB Compiler and MATLAB Production Server

Musashi Seimitsu Industry Co.,Ltd.

Detect Abnormalities in Automotive Parts

Automated visual inspection of 1.3 million bevel gear per month

MATLAB use in project:

- Preprocessing of captured images
- Image annotation for training
- Deep learning based analysis
 - Various transfer learning methods
 (Combinations of CNN models, Classifiers)
 - Estimation of defect area using Class Activation Map (CAM)
 - Abnormality/defect classification
- Deployment to NVIDIA Jetson using GPU Coder

Why MATLAB for A.I. Tasks?

Increased productivity with interactive tools

Generate simulation data for complex models and systems

Ease of deployment and scaling to various platforms

Full A.I. workflows that cannot be easily replicated by other toolchains

Call to action

- Visit the Deep Learning Booth!
- Related upcoming talks:
 - Al Techniques for Signals, Time-series, and Text Data
 - Sensor Fusion and Tracking for Autonomous Systems
 - Deploying Deep Neural Networks to Embedded GPUs and CPUs