Implementation verification of picking system for industrial robot using ROS and MATLAB®

Masaru Ken Morita
Development Dept.
Environmental & Social Systems Div.
YASKAWA ELECTRIC CORPORATION

© 2019 YASKAWA Electric Corporation
Speaker Introduction

My job
- Controller development for plants
- Especially on HMI for operators
- Specializes in software development

My authored book on ROS
- I mainly wrote application sections such as OpenCV, PCL, Pluginlib, rostest, industrial_ci and so on...
- Also wrote **MATLAB integration**

Source: https://opencv.org/
Source: http://pointclouds.org/
Source: https://travis-ci.org/

1st prize seller on Amazon JP (Robotics category)
ROS commits experiences and contributions (Hobby)

Autonomous drive

- **ackermann_steering_controller**
 - First author
 - Sent PR to ros_controllers repo & already merged!

- **stepback_and_rotate_recovery (plugin)**

- **steer_bot_hardware_sim (plugin)**

- Remote monitoring with integrating ROS & OpenVPN

Source: http://wiki.ros.org/Robots/CIR-KIT-Unit03
ROS industrial robot apps through my Ph.d program

- Easy to use industrial robots
 - Construction of industrial robot (teach-less) interactive UI with Pepper (voice+tablet)
 - Industrial robot operation from a remote place (teach-less)

- Industrial robot operation from demonstration

- Improving the layout of industrial robots using 5G network
Outline

1. Motivation
 - Robotics System Toolbox™
 - What’s ROS-Industrial?
 - Pros for ROS+MATLAB

2. Sample Apps
 - Pick & Place App Overview
 - Detail on each functions

3. Impression as a User
 - Pros
 - Cons
 - Future work

Additional Information:
- MATLAB/Simulink
- ROS
- Gazebo
Motivation

YASKAWA
- Unique technologies with advantages
- Limited resources for new technology introduction and verification

In-house tech.

Expanding advanced functions and quality that are lacking with OSS alone

MATLAB/Simulink
- Secure quality that could be difficult to be provided by only installing OSS
- Advanced technology utilization not provided by ROS alone

Commercial Tool

Open Innovation
- Easy combination of advanced technologies
- Unevenness of the available functions

ROS

Possibility of innovation through integration of
- In-house tech. × OSS × Commercial Tool

I introduce the combination verification of OSS × Commercial Tool
High potential of Robotics System Toolbox

Various Toolboxes

Data Analytics
Demonstrates how to use MATLAB for large-scale data, machine learning, and analysis in an enterprise environment.

Wireless communication
See how MATLAB can help you develop algorithms and perform wireless system simulations.

Workspace

rosinit('master_host')

sub = rossubscriber('/chat', @callback)

pub = rospublisher('/chat', 'std_msgs/String')

ROS Network

Source: https://news.mit.edu/2015/mit-team-places-sixth-darpa-robotics-challenge-0608
Source: https://projects.preferred.jp/tidying-up-robot/
Difficulty of adopting ROS at the manufacturer

1) Technical Issue

Technical issue:
- It is difficult to employ engineers who can handle the latest OSS libraries and various programming languages.

Customers to deliver value to

But not easy...
Customers to deliver value to

Python, C++, Java

Strategic issue:
• Conflicts between the use of OSS and intellectual property protection.
• Less precedent usage of OSS in development especially among traditional makers.

Source: https://www.irasutoya.com/2019/03/blog-post_877.html

Difficulty of adopting ROS at the manufacturer 2) Strategic Issue
Difficulty of adopting ROS at the manufacturer 2) Strategic Issue

Customers to deliver value to

MATLAB/Simulink

- Software installation experience: more than 100,000 companies, governments, universities
- Customer base: More than 185 countries
- MATLAB Users: Over 4 Million Worldwide
- MATLAB Central File Exchange Downloads: Over 3 Million Files
- Number of contributors to the MATLAB Central app: more than 525,000 worldwide
- Number of third-party solutions created with MATLAB / Simulink: 500+
- MATLAB Number of Books: More than 2,000 in 27 languages
Difficulty of adopting ROS at the manufacturer

1) Solution

Technical issue:
- It is difficult to employ engineers who can handle the latest OSS libraries and various programming languages.

Solution:
1. Many MATLAB engineers exist in manufacturers.
2. MATLAB resources are also accumulated a lot there.

MATLAB/Simulink

Customers to deliver value to
Difficulty of adopting ROS at the manufacturer 2) Solution

Solution: MATLAB/Simulink
1. Interfacing ROS thru MATLAB increases product reliability
2. MATLAB-based product development is often experienced

Strategic issue:
- Conflicts between the use of OSS and intellectual property protection.
- Less precedent usage of OSS in development especially among traditional makers.

Customers to deliver value to

That’s why I started to watch on MATLAB & ROS integration!
Robotics System Toolbox

- Includes various algorithms and functions essential for robotics
- Added interface for linking MATLAB® / Simulink® and ROS

Usage in the demo

Robotics System Toolbox

Other Toolboxes

MATLAB/Simulink

ROS IO

Source: https://www.vexels.com/png-svg/preview/140692/linux-logo

Windows: Trademark of Microsoft Corporation
Linux: Trademark of Torvalds, Linus
Simulink: Trademark of The MathWorks, Inc.
Development of ROS for industrial application

ROS-Industrial (ROS-I)

- Consortium to promote industrial application of ROS
- Over 60 global companies such as manufacturers, users and plants participate

Source: https://rosindustrial.org/ric/current-members

Yaskawa U.S.A
Motoman's repository of ROS-Industrial

Free published in GitHub repository

- Driver, 3D CAD model, visualization tool correspondence, etc.

Reference: GitHub

Source: https://github.com/ros-industrial/motoman

GP12/7/8
MH5/12/50
MotoMINI
SDA10F/10D
SIA5D/10D/20D
Pros of ROS implementation at the manufacturer

ROS features

- Communication library → Focus on application development
- Development and operation tools → Graph, 3D Viewer, Simulator, Compiler
- High-performance library → Also functions at academic level
- Ecosystem → Easy to share and install apps

Easy benchmarking

- Free access to advanced technologies available with ROS

Easy combination verification

- Sensor / actuator compatible with ROS can be easily introduced
- Interworking can be expected with simple settings by using the ROS network

Reduction of development man-hours Efficiency of advanced function benchmark etc.
Advantages of Introducing Robotics System Toolbox

Robotics System Toolbox Features

- Maternal MATLAB is multi-platform
- Can interact with other toolboxes and scripts

Easy combination verification with existing models

- Works with MATLAB / Simulink assets accumulated in-house
- Mainstream OS among manufacturers: ROS verification is possible based on Windows

Easy to build various applications

- By combining various toolboxes of MATLAB, it is easy to develop advanced technology-based applications that are difficult to build with ROS alone

Perform verification with sample application
1. Motivation

Robotics System Toolbox™

What’s ROS-Industrial?

Pros for ROS+MATLAB

2. Sample Apps

Pick & Place App Overview

Detail on each functions

3. Impression as a User

Pros

Cons

Future work
App demo video

Example based system construction

- Build a system based on Example provided by Mathworks
- KUKA youBot → Yaskawa MotoMINI, SVM → YOLOv2

![State control Block Diagram](image)

Object recognition

Simulator
App demo video
Sample application summary

Object recognition + position estimation
- Object recognition by deep learning based on RGBD sensor information
- Estimate the position of a 3D object

Path plan + pick & place
- Plan the trajectory from the robot's current posture to the recognized object position
- Control the robot based on the planned trajectory and carry out pick and place

Voice input
- Voice input with microphone
- Control the robot according to the instructions

MotoMINI simulation
- Utilize MotoMINI model provided by ROS-I
- Use simulator (Gazebo)

Build sample application only with MATLAB function + open source
Sample app overview

Flow of explanation

1. Object detection
 Position estimation

2. Path planning

3. Speech recognition

4. State machine

Block diagram (Simulink model)

- Path planning
- State control
- Speech recognition
- Object detection
- Position estimation
- Acquisition of sensor value

Simulation

ROS

Pick and Place Controller

Motion Planner

User Command

Object Detector

State Controller

plannerResponse
plannerCommand

armCommand

ObjectDetected1

goalReached

goalSpline

ActaValid

SendRequest

SendResponse

Start ROS Interface

armCommand

ObjectDetected1

goalReached

Check if Goal Reached

armCommand
Sample app overview:

1. **Object detection**
 - Position estimation

2. **Path planning**

3. **Speech recognition**

4. **State machine**

Flow of explanation

Block diagram (Simulink model)

- **Path planning**
- **State control**
- **Speech recognition**
- **Object detection**
 - Position estimation
- **Acquisition of sensor value**
Flow of object detection + position estimation

Sensor info.
- Real or simulator

ROS -> MATLAB conv.

Object detection
- Use RGB image
- Detect by YOLOv2

Position estimation
- Use depth image
- Get 3D position

Deep Learning Toolbox™
Computer Vision Toolbox™

MATLAB Simulink

Explained from now

Path planning

Robotics System Toolbox™
Flow of object recognition by YOLOv2

Learning
- Image Acquisition
 - Robotics System Toolbox™
 - Image Processing Toolbox™
- Labeling
 - Input image
 - Anchor
 - Feature extraction + learning
 - YOLOv2
 - Learned model
 - To Recognition

Recognition
- Image Acquisition
 - Robotics System Toolbox™
- Input image
 - Learned YOLOv2
 - End to End Network
 - Bounding box estimation
 - Extract work
 - To position estimation
Position estimation with point cloud

Use of both RGB image and depth image data by RGBD sensor

Object detection with RGB image

Get the depth of the corresponding position in the depth image

Computer Vision Toolbox™
Sample app overview: 2. Path planning
Path planning flow

Setting
- Robot config (URDF, CAD)

Tree
- Easy access to ROS config data

IK
- Hand start / end point specification
- Calculate joint angle

Path planning
- Initial joint angle path (Linear interpolation)
- Optimization
- Optimal joint angle path (Spline interpolation)

Robotics System Toolbox™
MATLAB Simulink

ROS

© 2019 YASKAWA Electric Corporation
Path planning flow

Setting
- ROS
 - Import robot config (URDF, CAD)

Tree
- Easy access to ROS config data

IK
- Hand start / end point specification
- Calculate joint angle

Path planning
- Initial joint angle path (Linear interpolation)
- Optimization
- Optimal joint angle path (Spline interpolation)
Optimization overview

Optimization calculation

- Initial path (linear)
- Physical sim
- Cost function
- Cost function
- Converge?
- Update Spline points
- Optimization Toolbox™
- ROS
- ROS → MATLAB import
- Note: Separately from Robotics System Toolbox

ROS

Simscape™ Multibody™

MATLAB Simulink
Optimization overview: Main points

- Physical sim
- Cost function

Simscape™ Multibody™

Config

Robot config
(URDF, CAD)
Optimization overview: Main points

- **IK simulation**: Visualization of 3D motion
- **Physical sim**: Simulation of robot motion
- **Cost function**: Total torque cost optimization
- **Calculate torque by simulation**: Perform simulations to calculate torque

CAD import
- STL
- URDF

URDF import
- **Root config (URDF, CAD)**
- **Robot config (URDF, CAD)**

Simscape™ Multibody™

Cooperation is easy by the import function of ROS information
Sample app overview: 3. Speech recognition

Flow of explanation:
1. Object detection
 Position estimation
2. Path planning
3. Speech recognition
4. State machine

Block diagram (Simulink model):
- Path planning
- State control
- Speech recognition
- Object detection
- Position estimation
- Acquisition of sensor value

Simulation:
- ROS

Sample app overview:
1. Object detection
2. Path planning
3. Speech recognition
4. State machine

Block diagram:
- Pick and Place Controller
- Motion Planner
- Object Detector
- State Controller
- Speech recognition
- Object detection
- Position estimation
- Acquisition of sensor value

Flow of explanation:
- 1. Object detection
- 2. Path planning
- 3. Speech recognition
- 4. State machine
Speech recognition flow

Voice input
- Via mic.
- Acquire sound signal

Voice recognition
- Spectrogram img
- Word recognition w/t CNN

Operation command
- generate motion instruction to hold the specified work

Spectrogram conversion

Word recognition result

Operation instruction

Audio Toolbox™

Deep Learning Toolbox™

Robotics System Toolbox™

MATLAB Simulink

MATLAB Simulink

MATLAB Simulink
Speech recognition Using deep learning (CNN)

Flow of speech recognition w/t CNN

Learning
- Voice data set
- Spectrogram image
- Feature extraction + learning
- CNN
- Learned Model
- Recognition
- Voice input
- Spectrogram image
- Feature extraction + classification
- Learned CNN
- Word recognition
- Motion instruction generation
- State Control

Audio Toolbox™

MATLAB
Simulink

© 2019 YASKAWA Electric Corporation
Sample app overview: 4. State machine
Control modules by state transition

State management of manipulator

Loop of object recognition & Pick & Place

Object Recognition

Path planning based on object position

Path planning

State transition during object detection

MATLAB Simulink

Stateflow®

Home Position

Wait

Pick & Place

Joint path open/close

Pick and place completion

© 2019 YASKAWA Electric Corporation
Outline

1. Motivation
- Robotics System Toolbox™
- What’s ROS-Industrial?
- Pros for ROS+MATLAB

2. Sample Apps
- Pick & Place App Overview
- Detail on each functions

3. Impression as a User
- Pros
- Cons
- Expecting Future work

YASKAWA
MATLAB/Simulink
ROS/Gazebo
Impression & Requests as a User of MATLAB

Pros
- Easy collaboration with advanced functions → ROS alone can not be handled as easily as MATLAB
- Highly compatible with ROS, such as URDF, TF, Gazebo I/F too.
- Easy to use sequencer and blocking GUI such as StateFlow and Simulink
- Development based on Example enables early startup of prototypes

Cons
- Processing takes time → Speeding up with Coder is also possible
- The parts requiring tuning are dispersed when changing the robot
- Some apps require to load the robot model separately for each toolbox

Expecting Future work
- Import MATLAB motor and other models as Gazebo plug-in
- Need a sample where ROS for Windows and MATLAB work together → Currently there is only the tutorials where ROS runs on Linux on VM
- Support for ROS 2 and V-REP too!
Labeling for YOLOv2

Training data
- Place works with random sets of position and posture
- Automatically capture parts images with various poses
- Automatically estimate bounding boxes and labels

Gazebo
- Replace works from MATLAB
- Send images to ROS

10X Faster