
1

-!4,!" 0ÒÏÄÕÃÔÉÏÎ 3ÅÒÖÅÒ)ÎÔÅÒÆÁÃÅ ÆÏÒ 4ÁÂÌÅÁÕ΅ ÓÏÆÔ×ÁÒÅ

Reference Architecture

2

Contents
Introduction .. 3

System Requirements ... 3

MathWorks Products .. 3

Tableau Products .. 3

Option 1: Getting Started: Using Web Data Connector .. 4

Architecture Diagram .. 4

Installation and Configuration .. 4

Usage ... 5

MATLAB Environment setup ... 5

Tableau Environment Setup.. 8

Option 2: Getting Started: Using External Service Connection .. 17

Architecture Diagram .. 17

Installation and Configuration .. 17

Usage ... 20

Tableau Environment Setup.. 20

MATLAB Environment Setup ... 24

Notes ... 28

Determining the correct option to use ... 28

Contact Information .. 29

Appendix A: Set up Internet Information Services ... 30

Appendix B: Handling input arguments from Tableau in MATLAB ... 34

3

Introduction
This reference architecture outlines the use of MATLAB and MATLAB Production Server for advanced
analysis and analytics within the Tableau platform. There are two options for interfacing Tableau with
MATLAB Production Server.

1) Web Data Connector: Retrieve data via MATLAB functions running on MATLAB Production Server for
use in Tableau
2) External Service Connection: Send data from Tableau for analysis by functions running on MATLAB
Production Server. This is similar to other external analytics integrations.

The following sections explain the steps involved for setting up and using both options. Please see
ΨDetermining the correct option to useΩ in the Notes section at the end of this document for selecting the
option most appropriate for your application.

Note: The configurations provided in this document are for reference only.

System Requirements
This reference architecture is comprised of the following components and was developed using the

versions as listed. See the product documentation for any product specific requirements.

MathWorks Products
1. MATLAB (R2016b or later)

2. MATLAB Compiler SDK (R2016b or later)

3. MATLAB Production Server (R2016b or later)

Tableau Products
1. Tableau Desktop (10.3.1 or later)

2. Tableau Server (10.5.3 or later)

4

Option 1: Getting Started: Using Web Data Connector

Architecture Diagram

Installation and Configuration
The Web Data Connector (WDC) is a Tableau feature that helps Tableau users access any data available

over HTTP from internal web services, REST APIs, JSON data etc. The WDC is an HTML page with JavaScript

code to manage the communication with other web services/APIs. The HTML page can also display a UI

to the Tableau user who can then select the data to be loaded.

Note that although this example uses HTTP, MATLAB Production Server supports calls using HTTPS as well.
More information on security and enabling HTTPS is provided below:
https://www.mathworks.com/help/mps/security.html
Also note that for all examples in this document, the MATLAB application can be accessed via RESTful API

either by

(a) Packaging and deploying the MATLAB application to MATLAB Production server or

(b) Using MATLAB Compiler SDK to start up a test server in local machine.

The first option to integrate MATLAB applications with Tableau utilizes a custom WDC component that

connects to MATLAB Production Server as a data source. The HTML page is hosted on a web or application

server so that it is accessible over HTTP from Tableau.

To set up the WDC for connecting to MATLAB Production Server, locate the MPS_WDC_Sunspot.html file

in the package provided under \WDC\Examples\Web_Data_Connector\MPS_WDC_Sunspot.html

Although any web server can be used to host the HTML page, the example in this package has been

tested using Internet Information Services(IIS) ŀƴŘ ΨƘǘǘǇ-ǎŜǊǾŜǊΩ

https://www.mathworks.com/help/mps/security.html

5

The Instructions to enable IIS on a Windows 10 machine are provided in Appendix A.

A second choice for hosting the web page is http-server, which is a simple, zero-configuration command-

line HTTP server. Help on starting this server is below:

https://www.npmjs.com/package/http-server

Usage
The example used for this demo will allow Tableau users to call a MATLAB application and analyze

cyclical data using a fast Fourier transform algorithm. Fourier transformations allows users to analyze

variations in data, such as an event in nature over a period of time. The data retrieved here represents

the number and size of sunspots for the last 300 years, using the Zurich sunspot relative number.

The function used in this MATLAB application to perform Fourier transformation ƛǎ ΨŦŦǘΩΣ ǿƘƛŎƘ has a

lower computational cost when compared to other direct implementations. By integrating the MATLAB

analysis with Tableau, it is possible to provide Tableau users direct access to powerful analyzing

capabilities in MATLAB.

More information about this example is documented below:

https://www.mathworks.com/examples/matlab/mw/matlab_featured-ex37594814-analyzing-cyclical-

data-with-fft

The data received from MATLAB is parsed by the Web Data Connector (HTML file) and sent back to

Tableau, where the visualizations can be plotted to analyze trends and variations.

MATLAB Environment setup
Under ~\WDC\Examples\MATLAB, locate the getsunspotdata.m file and the WDCPOC.prj file.

Open the WDCPOC.prj file in MATLAB (MATLAB Compiler SDK is required). This will bring up the UI as

shown below:

https://www.npmjs.com/package/http-server
https://www.mathworks.com/examples/matlab/mw/matlab_featured-ex37594814-analyzing-cyclical-data-with-fft
https://www.mathworks.com/examples/matlab/mw/matlab_featured-ex37594814-analyzing-cyclical-data-with-fft

6

Click on the Test Client button highlighted above.

This will bring up the test environment for MATLAB Production Server. Check the Ψ9ƴŀōƭŜ /hw{Ω ƻǇǘƛƻƴ

and click the start button.

7

This should start up the test server that enables MATLAB developers to test MATLAB applications in a

simulated deployed environment. The test server listens at localhost, and default port number 9910 as

below:

8

The figure above shows the test server in the MATLAB session listening at port 9910.

Tableau Environment Setup
Open Tableau and ǳƴŘŜǊ Ψ/ƻƴƴŜŎǘΩ ƻǇǘƛƻƴ ƻƴ ǎǘŀǊǘ ǇŀƎŜΣ click on Connect to Web Data Connector.

9

This will bring up the UI below:

10

Type in http://localhost/MPS_WDC_Sunspot.html in the address bar. This should bring up the UI as below.

/ƭƛŎƪ ƻƴ Ψ{ǳōƳƛǘΩ ōǳǘǘƻƴ ǘƻ ǊŜƎƛǎǘŜǊ ǘƘŜ ŎƻƴƴŜŎǘƻǊ ǿƛǘƘ ¢ŀōƭŜŀǳΦ ¢ƘŜ ²Ŝō 5ŀǘŀ /ƻƴƴŜŎǘƻǊ ǇǊƻǾƛŘŜǎ

Tableau with the schema of the table that will contain the data to be sent to Tableau from the external

service (in this case from MATLAB Production Server).

Tableau will show the column names of the table to be retrieved as below:

http://localhost/MPS_WDC_Sunspot.html

11

/ƭƛŎƪ ƻƴ ǘƘŜ Ψ¦ǇŘŀǘŜ bƻǿΩ ōǳǘǘƻƴΦ ¢Ƙƛǎ ǿƛƭƭ initiate an HTTP call using WDC to the test server started in

the previous step. The data from the sunspot data file in MATLAB is now available within Tableau as shown

below:

12

In the test server, the call from Tableau can be seen in the call logs:

Once data is available in Tableau, it is easy to plot the sunspot data and Fourier coefficients in the Tableau

worksheet. To create a new sheet in Tableau, locate the icons on the bottom toolbar in Tableau as shown:

13

Click on a new worksheet icon highlighted above. This will open a new worksheet in Tableau with the data

from MATLAB Production Server available as fields. Please note that the column names have been

renamed to real(y) and imag(y). 9ƴǎǳǊŜ ǘƘŀǘ Ψ¸ŜŀǊΩ ŀǇǇŜŀǊǎ ǳƴŘŜǊ ǘƘŜ Ψ5ƛƳŜƴǎƛƻƴǎΩ ǘŀōΣ ŀƴŘ Ψreal(y)Σ Ψ½ǳǊƛŎƘ

bǳƳōŜǊΩ ŀƴŘ Ψimag(y) ŀǇǇŜŀǊ ǳƴŘŜǊ ΨaŜŀǎǳǊŜǎΩ ǘŀōΦ

To plot the sunspot data, drag ŀƴŘ ŘǊƻǇ ǘƘŜ Ψ¸ŜŀǊΩ ŦƛŜƭŘ ǘƻ /ƻƭǳƳƴǎΣ ŀƴŘ ½ǳǊƛŎƘ bǳƳōŜǊ ŦƛŜƭŘ ǘƻ wƻǿǎΦ

Right click Year under Columns and ensure that the dimension of the data is used, and not the attribute

14

ƻǊ ƳŜŀǎǳǊŜ ŀǎ ǎƘƻǿƴ ōŜƭƻǿΦ {ƛƳƛƭŀǊƭȅΣ ǊƛƎƘǘ ŎƭƛŎƪ ƻƴ ½ǳǊƛŎƘbǳƳōŜǊ ƛƴ wƻǿǎ ŀƴŘ ŜƴǎǳǊŜ Ψ5ƛƳŜƴǎƛƻƴΩ ƛǎ

selected.

This will plot the sunspot data in Tableau as below:

15

To plot the Fourier coefficients, create a new sheet as described above, and drag and drop the Realvalues

to Columns, and ImaginaryValues to Rows. As before, right click on the field names and ensure that that

Ψ5ƛƳŜƴǎƛƻƴΩ ƛǎ ǎŜƭŜŎǘŜŘ. This will plot the Fourier coefficients as below:

The example included in this package also plots the power spectrum as a function of frequency, and as a

function of period. A dashboard can be created in Tableau displaying all the plots in a single screen.

16

This worksheet can also be published to Tableau Server, enabling access for multiple Tableau users using

a browser. It is also possible to refresh data on a schedule on Tableau Server so that the latest data can

be retrieved and plotted automatically.

17

Option 2: Getting Started: Using External Service Connection

 Architecture Diagram

Installation and Configuration
The External Service Connection option in Tableau provides a set of functions that you can use to pass

expressions to external services for integration with MATLAB. More information on this feature is

available at https://onlinehelp.tableau.com/current/pro/desktop/en-us/r_connection_manage.html.

MATLAB Production Server Interface for Tableau software is an external service that Tableau users can

connect to using External Service Connection. The interface is a Node.js server application that can run

ŜƛǘƘŜǊ ƻƴ ŀƴ ŜƴŘ ǳǎŜǊǎΩ ŘŜǎƪǘƻǇ ƳŀŎƘƛƴŜ ƛƴ ŀ ǘŜǎǘ ŜƴǾƛǊƻƴƳŜƴǘΣ ƻǊ in a production environment depending

upon the scaling and redundancy needs.

A license for the optimization toolbox is required to run the MATLAB example discussed in this document.

The steps involved in installation and configuration of the interface application are:

1. Install Node.js

The interface application requires Node.js to be installed in the machine before startup. Node.js can be

installed from the below link:

 https://nodejs.org/en/download/

2. Unpack the MATLAB interface for Tableau software

https://onlinehelp.tableau.com/current/pro/desktop/en-us/r_connection_manage.html
https://nodejs.org/en/download/

18

¢ƘŜ a!¢[!. ǇŀŎƪŀƎŜ ά{ŜǘǳǇΦŜȄŜέ Ŏƻƴǘŀƛƴǎ ǘƘŜ interface application, as well as the MATLAB code and

Tableau workbook required for the example discussed in this document. Running the setup.exe installer

will unpack the Getting_Started.pdf guide and 2 folders as below:

Please note that running the setup.exe will only unpack the application, installation requires an

additional step as described below in (C).

The MATLAB interface for Tableau Software contains the Node.js application.

The Examples folder contains the MATLAB code and Tableau workbook required for the example

discussed in this document.

3. Install the interface

Installation of Node.js will make available the package manager for JavaScript (npm). npm enables users

to discover and download packages that other JavaScript users have created. Once Node.js has been

installed, change directories to the \MATLAB Interface for Tableau Software\Interface folder and run

the command

 $ npm install

If ΨnpmΩ is not available from this location, use the complete path to the npm file. This default location is

ƛƴ ǘƘŜ ƛƴǎǘŀƭƭŀǘƛƻƴ ǇŀǘƘ ŦƻǊ bƻŘŜΦƧǎ ΨC:\Program Files\nodejsΩΦ ¢his will install the dependencies required

for the interface application.

4. Configure the environment

The interface application contains a configuration file in the location MATLAB Interface for Tableau

Software\ Interface\config\server.config that can be modified to reflect the environment in which the

application will be running. A sample config file is as below:

19

As can be seen in the image above, this is a JSON formatted string which can be edited to reflect the
correct settings for the interface in your environment. The main values to validate are:

(i) port ς This is the port number where the interface will listen and accept connections from

Tableau. The default is 3001

(ii) mps_server ς This is the URL for the MATLAB Production Server.

(iii) mpsPort ς This is the port number where MATLAB Production Server is listening.

(iv) deployfolder ς This is the folder where compiled MATLAB applications are deployed. This

setting is required if the MATLAB developer wishes to publish compiled archives directly to

MATLAB Production Server via the interface.

(v) authtoken - This is a unique key the MPS developer will need to provide to authorize the

publishing of compiled MATLAB applications using the interface.

5. Start the server

Start the server using the command Ψnode bin/MATLABinterfaceΩΦ ¢Ƙƛǎ ǎƘƻǳƭŘ ǎǘŀǊǘ ǳǇ ǘƘŜ ǎŜǊǾŜǊ ƭƛǎǘŜƴƛƴƎ

at the port specified in server.config. If the command is not recognized, you may need to include the

complete path to the node.exe file. Once the server starts, you should see the message as below:

{

 "name": "MATLAB Production Server Interface for Tableau software",

 "description": "A lightweight middleware for MATLAB Production Server",

 "state_path": "/tmp",

 "server_version": "Alpha",

 "creation_time": "",

 "port": 3001,

 "limit": "50mb",

 "mpsstarted": "MATLAB Production Server is available.",

 "mpsstopped": "MATLAB Production Server is not available",

 "authtoken":

"ap6Tp2kekrPrm5q1vUsHHVl6i8khWJrTispgOrczc20hIGRmhYPWArxOJXxrHsGf",

 "configFile": "ma in_config",

 "deployfolder": "C: \ \ MPS\ \ R2016B\ \ auto_deploy \ \ ",

 "mps_server": "http://localhost",

 "mps_port": 9910

}

20

Usage
The example used for this option solves the classic travelling salesman problem where the goal is to find

the shortest closed path through a set of stops. MATLAB solves this problem using an iterative process by

determining subtours, and rerunning the optimization until all subtours are eliminated. More information

about this example can be found here:

https://www.mathworks.com/help/optim/ug/travelling-salesman-problem.html

The Tableau worksheet that visualizes the shortest path is included in this package under

ά\ExternalServiceConnection\Examples\Travelling_Salesman_ProblemέΦ

The server interface set up above receives requests for MATLAB analytics from Tableau. The server

formats the data received from Tableau as JSON, and makes a RESTful call via HTTP to MATLAB Production

Server. The results from the MATLAB computations are sent back to the node.js server, which then returns

it to Tableau.

Tableau Environment Setup
To enable Tableau to make a service call to the interface, follow the below steps:

a) Lƴ ǘƘŜ IŜƭǇ ƻǇǘƛƻƴΣ ŎƭƛŎƪ ƻƴ {ŜǘǘƛƴƎǎ ŀƴŘ tŜǊŦƻǊƳŀƴŎŜΣ ǘƘŜƴ ΨaŀƴŀƎŜ 9ȄǘŜǊƴŀƭ {ŜǊǾƛŎŜ /ƻƴƴŜŎǘƛƻƴΩ

https://www.mathworks.com/help/optim/ug/travelling-salesman-problem.html

21

This will bring up the UI below:

Enter the information for Server and port number for the interface in the dialog above. The server

information is the hostname where the node.js application is running. The port number should match the

port number configured in the server.config file in the config folder for the interface.

22

In the above figure, the interface is running locally, so the server is localhost. The port number configured

in server.config file is 3001.

Click on Test Connection button to ensure successful connection to the interface.

b) Load the data file to work with in Tableau. This example uses the airports.csv file available under

¢ǊŀǾŜƭƭƛƴƎψ{ŀƭŜǎƳŀƴ ŦƻƭŘŜǊΦ /ƭƛŎƪ ƻƴ ά{ƘŜŜǘмέ ǘƻ ǾƛŜǿ ǘƘŜ ¢ŀōƭŜŀǳ ǎƘŜŜǘ

c) ¦ƴŘŜǊ ǘƘŜ ΨaŜŀǎǳǊŜǎΩ ǎŜŎǘƛƻƴ ƛƴ ¢ŀōƭŜŀǳΣ ǊƛƎƘǘ ŎƭƛŎƪ ŀƴŘ ǎŜƭŜŎǘ Ψ/ǊŜŀǘŜ /ŀƭŎǳƭŀǘŜŘ CƛŜƭŘΩΦ

23

d) This will bring up the window to edit the calculated field. Enter the name of the calculated field in the

textbox.

Tableau provides 4 SCRIPT_XXXX functions to make an external service call. Depending on the data type

expected from MPS, use the appropriate function.

e) Specify the MATLAB package and function to call

The argument for the SCRIPT_XXXX function takes in the name of the MATLAB function, as well as the

data to be passed to the function. Consider the example below:

Here, the name of the CTF archive is TSP and the name of the MATLAB function is GetLatLongVector. This

ƛǎ ǎǇŜŎƛŦƛŜŘ ƛƴ ǘƘŜ ŦƛǊǎǘ ŀǊƎǳƳŜƴǘ ŀǎ Ψ¢{tκDŜǘ[ŀǘ[ƻƴƎ±ŜŎǘƻǊΩ

24

The data to be sent to MATLAB follows the first argument. In the above example, The Longitude and

Latitude values are sent to MATLAB, and are specified in that order as arguments to the SCRIPT_XXXX

function. Please see Ψ[ƛƳƛǘŀǘƛƻƴǎΩ ƛƴ ǘƘŜ bƻǘŜǎ ǎŜŎǘƛƻƴ ŀǘ the end of this document for more information

on data formats supported.

Click ok to accept the calculated field. This field can now be used in any of the plots or graphs in Tableau.

Any time the field is included as part of a worksheet, Tableau sends a request to the MATLAB Production

Server interface for Tableau and assigns the results of the call to the calculated field.

MATLAB Environment Setup
To ensure MATLAB Production Server handles the request from interface, follow the steps below:

a) Ensure that the MATLAB application is ready to accept input arguments from Tableau.

Input arguments from Tableau are structures with pre-determined names for each input argument.

Ensure that the MATLAB function can access the data sent by Tableau by following either of the

options described in Appendix B.

b) Deploy MATLAB package to MPS or use MATLAB Compiler SDK

Use the MATLAB Compiler SDK to package the MATLAB functions into deployable archives for deploying

to MATLAB Production Server. For more information, click on the link below:

 https://www.mathworks.com/help/mps/deployable-archive-creation.html

You can also use the testing environment available as part of the MATLAB to start up a test MPS server

locally. More information is at:

 https://www.mathworks.com/help/compiler_sdk/mps_dev_test/test-in-process.html

To quickly setup up a test MPS server using MATLAB Compiler SDK, follow the steps below:

(i) Click on Apps gallery and open Production Server Compiler App:

https://www.mathworks.com/help/mps/deployable-archive-creation.html
https://www.mathworks.com/help/compiler_sdk/mps_dev_test/test-in-process.html

25

(ii) /ƭƛŎƪ ƻƴ ǘƘŜ ΨҌΩ ōǳǘǘƻƴ ǘƻ ōǊƛƴƎ ǳǇ ǘƘŜ ŦƛƭŜ ǎŜƭŜŎǘƛƻƴ ŘƛŀƭƻƎ ŀƴŘ ŀŘŘ ǘƘŜ a!¢[!. ŎƻŘŜ ŦƛƭŜǎ ǘƻ

package:

26

(iii) Once the MATLAB functions are selected, ensure that the Archive information matches your

specifications as highlighted above. In this example, the name of the archive(CTF) is TSP, and the

name of the function is the name of the MATLAB function added, i.e., GetLatLongVector.

(iv) Once the required files are added, ŎƭƛŎƪ ƻƴ ǘƘŜ Ψ¢Ŝǎǘ /ƭƛŜƴǘΩ ōǳǘǘƻƴ ŀƴŘ ǘƘŜƴ ŎƭƛŎƪ ǎǘŀǊǘ ǘƻ ǎǘŀǊǘ ǳǇ

a local instance of MATLAB Production Server listening at port 9910.

27

c) Once the packaged MATLAB function is hosted on MPS or on the testing environment, the calls from

Tableau are routed to MATLAB by the interface via HTTP. Output from the MATLAB functions are

provided back to the Tableau calculated field, where it can be visualized.

Once the MATLAB and Tableau environments are setup, test the interaction between the applications by

clicking on the refresh button in Tableau. The refresh button is available in the toolbar in Tableau as

highlighted below, and is disabled if Tableau is set for auto-update. Refreshing, or auto-updating within

Tableau should send the data loaded in Tableau to MATLAB, and make the results from MATLAB available

in the map.

¢ƘŜ a!¢[!. /ƻƳǇƛƭŜǊ {5Y ΨǘŜǎǘ /ƭƛŜƴǘΩ ǿƛƴŘƻǿ ǎƘƻǳƭŘ ǎƘƻǿ ǘƘŜ ǎǳŎŎŜǎǎŦǳƭ Ŏŀƭƭ ŀǎ ōŜƭƻǿΥ

