
Simulink Report Generator

Simulink Design Verifier

Requirement Based
Functional Test Cases

Test Cases identified
using Formal Methods

Modeling Standards Simulink Check

Simulink Test

Design constraints
(Equivalence classes, Boundary
Values, Derived Requirements) Simulink Coverage

SRS + ADD

MODEL

Req. Baseline

REQUIREMENTS

• Software and Interface Design
Description (Architectural Design)

• Software Requirements Specification
• Software Design Description
• Software Model and Simulation Data

and Documentation, including the
Verification, Validation, and
Credibility Plan for Software Model
and Simulation

Requirements Toolbox

+

M
o

d
el

 C
o

ve
ra

ge
 A

n
al

ys
is

Simulation in the Loop Functional Testing

Te
st

 C
as

e
 T

ra
ce

ab
ili

ty

Design Error Detection and Property Proving

D
es

ig
n

 T
ra

ce
ab

ili
ty

SOURCE CODE

• Software Design Description
• Software Version Description Reports
• Software Test Procedures
• Software Test Reports
• Software Unit Integration Test Plan

(SUITP)
• Software Data Dictionary

Embedded Coder

Simulink Code Inspector
Polyspace Bug Finder

Polyspace Code Prover

Coding Standards

Simulink Test

A
u

to
m

at
ic

 C
o

d
e

 G
e

n
e

ra
ti

o
n

Automatic Code Inspection -
structure and traceability

Source Code Traceability

So
u

rc
e

C
o

d
e

 T
ra

ce
ab

ili
ty

So
ft

w
ar

e
V

er
if

ic
at

io
n

 T
es

t
C

as
e

 T
ra

ce
ab

ili
ty

Prove Absence of RT Errors

Software in the Loop (SIL) Unit Testing

Simulink Requirements

Model Conformance Checks

Prepared by: Ossi Saarela, MathWorks
osaarela@mathworks.com

+1-508-647-1618
May 2024

NASA NPR 7150.2D Compliant Flight Software Development Workflow

NPR 7150.2 – 3.8 Automatic Generation of Software Source Code

3.8.1 The project manager shall define the approach to the automatic generation of software

source code including: [SWE-146]

a. Validation and verification of auto-generation tools.

b. Configuration management of the auto-generation tools and associated data.

c. Description of the limits and the allowable scope for the use of the auto-generated

software.

d. Verification and validation of auto-generated source code using the same software

standards and processes as hand-generated code.

e. Monitoring the actual use of auto-generated source code compared to the planned use.

f. Policies and procedures for making manual changes to auto-generated source code.

g. Configuration management of the input to the auto-generation tool, the output of the

auto-generation tool, and modifications made to the output of the auto-generation tools.

3.8.2 The project manager shall require the software developers and suppliers to provide

NASA with electronic access to the models, simulations, and associated data used as inputs

for auto-generation of software. [SWE-206]

Reuse of Previous Test Cases
Addition of Real-Time specific Test Cases Simulink Report Generator

Coder Settings

Validation
Objectives Settings

Test Environment Settings

Code Conformance (MISRA,…)

Simulation Case Results

EXECUTABLE OBJECT

CODE

Compiler

Processor and Hardware in the Loop (PIL and HIL) Unit Testing

Simulink Coverage
Code Coverage

SIL Test Case Results

Coverage Metrics

Doc Templates Scripts

Testing Environment Settings

Doc Templates Scripts

NPR 7150.2 – 4.1 Software Requirements

4.1.2 The project manager shall establish, capture, record, approve, and maintain software requirements, including requirements for COTS, GOTS, MOTS,

OSS or reused software components, as part of the technical specification. [SWE-050]

4.1.3 The project manager shall perform software requirements analysis based on flowed-down and derived requirements from the top-level systems

engineering requirements, safety and reliability analyses, and the hardware specifications and design. [SWE-051]

4.1.5 The project manager shall track and manage changes to the software requirements. [SWE-053]

NPR 7150.2 – 4.4 Software Implementation

4.4.2 The project manager shall implement the software design into software code.

[SWE-060]

NPR 7150.2 – 4.4 Software Implementation

4.4.4 The project manager shall use static analysis tools to analyze

the code during the development and testing phases to at a

minimum, detect defects, software security, code coverage, and

software complexity. [SWE-135]

NPR 7150.2 – 4.4 Software Implementation

4.4.5 The project manager shall unit test the software code. [SWE-062]

4.4.6 The project manager shall assure that the unit test results are repeatable. [SWE-186]

NPR 7150.2 – 4.4 Software Implementation

4.4.7 The project manager shall provide a software

version description for each software release. [SWE-063]

NPR 7150.2 – 4.4 Software Implementation

4.4.8 The project manager shall validate and accredit software tool(s) required to

develop or maintain software. [SWE-136]

NPR 7150.2 – 4.5 Software Testing

4.5.6 The project manager shall use validated and accredited software

models, simulations, and analysis tools required to perform qualification of

flight software or flight equipment. [SWE-070]

NPR 7150.2 – 4.5 Software Testing

4.5.3 The project manager shall test the software against its requirements. [SWE-066]

4.5.7 The project manager shall update the software test plan(s) and the software test

procedure(s) to be consistent with software requirements. [SWE-071]

NPR 7150.2 – 4.5 Software Testing

4.5.8 The project manager shall validate the software system on the targeted platform or

high-fidelity simulation. [SWE-073]

4.5.9 The project manager shall ensure that the code coverage measurements for the

software are selected, implemented, tracked, recorded, and reported. [SWE-189]

NPR 7150.2 – 5.3 Software Peer Reviews and Inspections

5.3.2 The project manager shall perform and report the results of software peer reviews or

software inspections for: [SWE-087]

a. Software requirements.

c. Any design items that the project identified for software peer review or software

inspections according to the software development plans.

d. Software code as defined in the software and or project plans.

e. Software test procedures

5.3.4 The project manager shall, for each planned software peer review or software

inspection, record necessary measurements. [SWE-089]

NPR 7150.2 – 3.11 Software Cybersecurity

3.11.5 The project manager shall test the software and record test results

for the required software cybersecurity mitigation implementations

identified from the security vulnerabilities and security weaknesses

analysis.[SWE 159]

NPR 7150.2 – 4.4 Software Implementation

4.4.3 The project manager shall select, adhere to, and verify

software coding methods, standards, and/or criteria. [SWE-061]

NPR 7150.2 – 4.1 Software Requirements

4.1.7 The project manager shall perform requirements validation to ensure

that the software will perform as intended in the customer environment.

[SWE-055]

NPR 7150.2 – 4.5 Software Testing

4.5.2 The project manager shall establish and maintain:

[SWE-065]

a. Software test plan(s).

b. Software test procedure(s).

c. Software test(s), including any code specifically written

to perform test procedures.

d. Software test report(s)

4.5.5 The project manager shall evaluate test results and

record the evaluation. [SWE-068]

NPR 7150.2 – 4.3 Software Design

4.3.2 The project manager shall develop, record, and maintain a software design based on the software architectural design that describes the lower-level

units so that they can be coded, compiled, and tested. [SWE-058]

NPR 7150.2 – 4.1 Software Requirements

4.1.1 The requirements phase is one of the most critical phases of software engineering. Studies show that the top problems in the software industry are due

to poor requirements elicitation, inadequate requirements specification, and inadequate management of changes to requirements. Requirements provide the

foundation for the entire life cycle, as well as for the software product. Requirements also provide a basis for planning, estimating, and monitoring.

Requirements are based on customer, user, and other stakeholder needs and design and development constraints. The development of requirements includes

elicitation, analysis, documentation, verification, and validation. Ongoing customer validation of the requirements to ensure the end products meet customer

needs is an integral part of the life cycle process. Customer validation can be accomplished via rapid prototyping and customer-involved reviews of iterative

and final software requirements.

NPR 7150.2 – 4.3 Software Design

4.3.1 Software design is the process of defining the software architecture, components, modules, interfaces, and data for a software system to satisfy

specified requirements. The software architecture is the fundamental organization of a system embodied in its components, their relationships to each other

and the environment, and the principles guiding its design and evolution. The software architectural design is concerned with creating a strong overall

structure for software entities that fulfill the allocated system and software-level requirements. Typical views captured in an architectural design include the

decomposition of the software subsystem into design entities, computer software configuration items, definitions of external and internal interfaces,

dependency relationships among entities and system resources, and finite state machines. The design should be further refined into lower-level entities that

permit the implementation by coding in a programming language. Typical attributes that are documented for lower-level entities include the identifier, type,

purpose, function, constraints, subordinates, dependencies, interface, resources, processing, and data. Rigorous specification languages, graphical

representations, and related tools have been developed to support the evaluation of critical properties at the design level. Projects are encouraged to take

advantage of these improved design techniques to prevent and eliminate errors as early in the life-cycle as possible. Software, developed or purchased, has

additional requirements to comply with from Section 508 of the Rehabilitation Act, as defined inNPR 2800.2.

NPR 7150.2 – 4.4 Software Implementation

4.4.1 Software implementation consists of implementing the requirements and design

into code, data, and records. Software implementation also consists of following

coding methods and standards. Unit testing is also usually a part of software

implementation (unit testing can also be conducted during the testing phase).

NPR 7150.2 – 4.5 Software Testing

4.5.1 The purpose of testing is to verify the software functionality and

remove defects. Testing verifies the code against the requirements and the

design to ensure that the requirements are implemented. Testing also

identifies problems and defects that are corrected and tracked to closure

before product delivery. Testing also validates that the software operates

appropriately in the intended environment. Please note for Class A software,

there are additional software test requirements and software integration

requirements as defined in NPR 8705.2.

NPR 7150.2 – 4.5 Software Operations, Maintenance, and Retirement

4.6.3 The project manager shall complete and deliver the software product to

the customer with appropriate records, including as-built records, to support the

operations and maintenance phase of the software's life cycle. [SWE-077]

Architectural Design

ARCHITECTURE

Architecture, Design, Source Code and Test Case
Traceability

Requirements Allocation

D
es

ig
n

 Im
p

le
m

e
n

ta
ti

o
n NPR 7150.2 – 4.2 Software Architecture

4.2.3 The project manager shall transform the requirements for the software into a recorded software architecture. [SWE-057]

4.2.4 The project manager shall perform a software architecture review on the following categories of projects: [SWE-143]

a. Category 1 Projects as defined in NPR 7120.5.

b. Category 2 Projects as defined in NPR 7120.5 that have Class A or Class B payload risk classification per NPR 8705.4.

NPR 7150.2 – 4.2 Software Architecture
4.2.1 Experience confirms that the quality and longevity of a software-reliant system is primarily determined by its architecture. The software architecture
underpins a system's software design and code; it represents the earliest design decisions, ones that are difficult and costly to change later. The
transformation of the derived and allocated requirements into the software architecture results in the basis for all software development work.

System Composer
Architecture Model Bi-directional Traceability Class A, B,

and C

Class

D

Class

F

Higher-level requirements to the software requirements X X

Software requirements to the system hazards X X

Software requirements to the software design components X

Software design components to the software code X

Software requirements to the software verification(s) X X X

Software requirements to the software non-conformances X X X

NPR 7150.2 – 3.12 Software Bi-Directional Traceability

3.12.1 The project manager shall perform, record, and maintain bi-directional traceability between the following software elements: [SWE-052]

Table 1. Bi-directional traceability by software classification

NPR 7150.2 – 3.11 Software Cybersecurity

3.11.1 Software defects are a central and critical aspect of computer

security vulnerabilities. Software defects with cybersecurity ramifications

include implementation bugs such as buffer overflows and design flaws

such as inconsistent error handling.

NPR 7150.2 – 4.5 Software Testing

4.5.3 The project manager shall test the software against its requirements. [SWE-066]

4.5.7 The project manager shall update the software test plan(s) and the software test

procedure(s) to be consistent with software requirements. [SWE-071]

4.5.12 The project manager shall verify through test the software requirements that trace to a

hazardous event, cause, or mitigation technique. [SWE-192]

4.5.13 The project manager shall develop acceptance tests for loaded or uplinked data, rules,

and code that affects software and software system behavior. [SWE-193]

NPR 7150.2 – 3.7 Safety-critical Software

3.7.4 If a project has safety-critical software, the project manager shall ensure that there

is 100 percent code test coverage using the Modified Condition/Decision Coverage

(MC/DC) criterion for all identified safety-critical software components. [SWE-219]

3.7.5 If a project has safety-critical software, the project manager shall ensure all

identified safety-critical software components have a cyclomatic complexity value of 15

or lower. Any exceedance shall be reviewed and waived with rationale by the project

manager or technical approval authority. [SWE-220]

	Slide 1

