
Chapter 7

Google PageRank

The world’s largest matrix computation. (This chapter is out of date and needs a
major overhaul.)

One of the reasons why GoogleTM is such an effective search engine is the
PageRankTM algorithm developed by Google’s founders, Larry Page and Sergey
Brin, when they were graduate students at Stanford University. PageRank is de-
termined entirely by the link structure of the World Wide Web. It is recomputed
about once a month and does not involve the actual content of any Web pages or
individual queries. Then, for any particular query, Google finds the pages on the
Web that match that query and lists those pages in the order of their PageRank.

Imagine surfing the Web, going from page to page by randomly choosing an
outgoing link from one page to get to the next. This can lead to dead ends at
pages with no outgoing links, or cycles around cliques of interconnected pages.
So, a certain fraction of the time, simply choose a random page from the Web.
This theoretical random walk is known as a Markov chain or Markov process. The
limiting probability that an infinitely dedicated random surfer visits any particular
page is its PageRank. A page has high rank if other pages with high rank link to
it.

Let W be the set of Web pages that can be reached by following a chain of
hyperlinks starting at some root page, and let n be the number of pages in W . For
Google, the set W actually varies with time, but by June 2004, n was over 4 billion.
Let G be the n-by-n connectivity matrix of a portion of the Web, that is, gij = 1
if there is a hyperlink to page i from page j and gij = 0 otherwise. The matrix G
can be huge, but it is very sparse. Its jth column shows the links on the jth page.
The number of nonzeros in G is the total number of hyperlinks in W .

Copyright c⃝ 2011 Cleve Moler
MatlabR⃝ is a registered trademark of MathWorks, Inc.TM

October 2, 2011

1

2 Chapter 7. Google PageRank

Let ri and cj be the row and column sums of G:

ri =
∑
j

gij , cj =
∑
i

gij .

The quantities rj and cj are the in-degree and out-degree of the jth page. Let p be
the probability that the random walk follows a link. A typical value is p = 0.85.
Then 1− p is the probability that some arbitrary page is chosen and δ = (1− p)/n
is the probability that a particular random page is chosen. Let A be the n-by-n
matrix whose elements are

aij =

{
pgij/cj + δ : cj ̸= 0

1/n : cj = 0.

Notice that A comes from scaling the connectivity matrix by its column sums. The
jth column is the probability of jumping from the jth page to the other pages on
the Web. If the jth page is a dead end, that is has no out-links, then we assign a
uniform probability of 1/n to all the elements in its column. Most of the elements
of A are equal to δ, the probability of jumping from one page to another without
following a link. If n = 4 · 109 and p = 0.85, then δ = 3.75 · 10−11.

The matrix A is the transition probability matrix of the Markov chain. Its
elements are all strictly between zero and one and its column sums are all equal to
one. An important result in matrix theory known as the Perron–Frobenius theorem
applies to such matrices. It concludes that a nonzero solution of the equation

x = Ax

exists and is unique to within a scaling factor. If this scaling factor is chosen so
that ∑

i

xi = 1,

then x is the state vector of the Markov chain and is Google’s PageRank. The
elements of x are all positive and less than one.

The vector x is the solution to the singular, homogeneous linear system

(I −A)x = 0.

For modest n, an easy way to compute x in Matlab is to start with some approx-
imate solution, such as the PageRanks from the previous month, or

x = ones(n,1)/n

Then simply repeat the assignment statement

x = A*x

until successive vectors agree to within a specified tolerance. This is known as the
power method and is about the only possible approach for very large n.

In practice, the matrices G and A are never actually formed. One step of the
power method would be done by one pass over a database of Web pages, updating
weighted reference counts generated by the hyperlinks between pages.

3

The best way to compute PageRank in Matlab is to take advantage of the
particular structure of the Markov matrix. Here is an approach that preserves the
sparsity of G. The transition matrix can be written

A = pGD + ezT

where D is the diagonal matrix formed from the reciprocals of the outdegrees,

djj =

{
1/cj : cj ̸= 0

0 : cj = 0,

e is the n-vector of all ones, and z is the vector with components

zj =

{
δ : cj ̸= 0

1/n : cj = 0.

The rank-one matrix ezT accounts for the random choices of Web pages that do
not follow links. The equation

x = Ax

can be written

(I − pGD)x = γe

where

γ = zTx.

We do not know the value of γ because it depends upon the unknown vector x, but
we can temporarily take γ = 1. As long as p is strictly less than one, the coefficient
matrix I − pGD is nonsingular and the equation

(I − pGD)x = e

can be solved for x. Then the resulting x can be rescaled so that∑
i

xi = 1.

Notice that the vector z is not actually involved in this calculation.
The following Matlab statements implement this approach

c = sum(G,1);

k = find(c~=0);

D = sparse(k,k,1./c(k),n,n);

e = ones(n,1);

I = speye(n,n);

x = (I - p*G*D)\e;

x = x/sum(x);

The power method can also be implemented in a way that does not actually
form the Markov matrix and so preserves sparsity. Compute

4 Chapter 7. Google PageRank

G = p*G*D;

z = ((1-p)*(c~=0) + (c==0))/n;

Start with

x = e/n

Then repeat the statement

x = G*x + e*(z*x)

until x settles down to several decimal places.
It is also possible to use an algorithm known as inverse iteration.

A = p*G*D + delta

x = (I - A)\e

x = x/sum(x)

At first glance, this appears to be a very dangerous idea. Because I − A is the-
oretically singular, with exact computation some diagonal element of the upper
triangular factor of I − A should be zero and this computation should fail. But
with roundoff error, the computed matrix I - A is probably not exactly singular.
Even if it is singular, roundoff during Gaussian elimination will most likely pre-
vent any exact zero diagonal elements. We know that Gaussian elimination with
partial pivoting always produces a solution with a small residual, relative to the
computed solution, even if the matrix is badly conditioned. The vector obtained
with the backslash operation, (I - A)\e, usually has very large components. If it
is rescaled by its sum, the residual is scaled by the same factor and becomes very
small. Consequently, the two vectors x and A*x equal each other to within roundoff
error. In this setting, solving the singular system with Gaussian elimination blows
up, but it blows up in exactly the right direction.

Figure 7.1 is the graph for a tiny example, with n = 6 instead of n = 4 · 109.
Pages on the Web are identified by strings known as uniform resource locators,
or URLs. Most URLs begin with http because they use the hypertext transfer
protocol. In Matlab , we can store the URLs as an array of strings in a cell array.
This example involves a 6-by-1 cell array.

U = {’http://www.alpha.com’

’http://www.beta.com’

’http://www.gamma.com’

’http://www.delta.com’

’http://www.rho.com’

’http://www.sigma.com’}

Two different kinds of indexing into cell arrays are possible. Parentheses denote
subarrays, including individual cells, and curly braces denote the contents of the
cells. If k is a scalar, then U(k) is a 1-by-1 cell array consisting of the kth cell in U,
while U{k} is the string in that cell. Thus U(1) is a single cell and U{1} is the string
’http://www.alpha.com’. Think of mail boxes with addresses on a city street.
B(502) is the box at number 502, while B{502} is the mail in that box.

5

alpha

beta

gamma

delta

sigma rho

Figure 7.1. A tiny Web.

We can generate the connectivity matrix by specifying the pairs of indices
(i,j) of the nonzero elements. Because there is a link to beta.com from alpha.com,
the (2,1) element of G is nonzero. The nine connections are described by

i = [2 6 3 4 4 5 6 1 1]

j = [1 1 2 2 3 3 3 4 6]

A sparse matrix is stored in a data structure that requires memory only for the
nonzero elements and their indices. This is hardly necessary for a 6-by-6 matrix
with only 27 zero entries, but it becomes crucially important for larger problems.
The statements

n = 6

G = sparse(i,j,1,n,n);

full(G)

generate the sparse representation of an n-by-n matrix with ones in the positions
specified by the vectors i and j and display its full representation.

0 0 0 1 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

1 0 1 0 0 0

The statement

c = full(sum(G))

6 Chapter 7. Google PageRank

computes the column sums

c =

2 2 3 1 0 1

Notice that c(5) = 0 because the 5th page, labeled rho, has no out-links.
The statements

x = (I - p*G*D)\e

x = x/sum(x)

solve the sparse linear system to produce

x =

0.3210

0.1705

0.1066

0.1368

0.0643

0.2007

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Page Rank

Figure 7.2. Page Rank for the tiny Web

The bar graph of x is shown in figure 7.2. If the URLs are sorted in PageRank
order and listed along with their in- and out-degrees, the result is

page-rank in out url

1 0.3210 2 2 http://www.alpha.com

6 0.2007 2 1 http://www.sigma.com

2 0.1705 1 2 http://www.beta.com

4 0.1368 2 1 http://www.delta.com

3 0.1066 1 3 http://www.gamma.com

5 0.0643 1 0 http://www.rho.com

7

We see that alpha has a higher PageRank than delta or sigma, even though they
all have the same number of in-links. A random surfer will visit alpha over 32% of
the time and rho only about 6% of the time.

For this tiny example with p = .85, the smallest element of the Markov tran-
sition matrix is δ = .15/6 = .0250.

A =

0.0250 0.0250 0.0250 0.8750 0.1667 0.8750

0.4500 0.0250 0.0250 0.0250 0.1667 0.0250

0.0250 0.4500 0.0250 0.0250 0.1667 0.0250

0.0250 0.4500 0.3083 0.0250 0.1667 0.0250

0.0250 0.0250 0.3083 0.0250 0.1667 0.0250

0.4500 0.0250 0.3083 0.0250 0.1667 0.0250

Notice that the column sums of A are all equal to one.
The exm toolbox includes the program surfer. A statement like

[U,G] = surfer(’http://www.xxx.zzz’,n)

starts at a specified URL and tries to surf the Web until it has visited n pages. If
successful, it returns an n-by-1 cell array of URLs and an n-by-n sparse connectivity
matrix. The function uses urlread, which was introduced in Matlab 6.5, along
with underlying Java utilities to access the Web. Surfing the Web automatically
is a dangerous undertaking and this function must be used with care. Some URLs
contain typographical errors and illegal characters. There is a list of URLs to
avoid that includes .gif files and Web sites known to cause difficulties. Most
importantly, surfer can get completely bogged down trying to read a page from
a site that appears to be responding, but that never delivers the complete page.
When this happens, it may be necessary to have the computer’s operating system
ruthlessly terminate Matlab. With these precautions in mind, you can use surfer
to generate your own PageRank examples.

The statement

[U,G] = surfer(’http://www.harvard.edu’,500)

accesses the home page of Harvard University and generates a 500-by-500 test case.
The graph generated in August 2003 is available in the exm toolbox. The statements

load harvard500

spy(G)

produce a spy plot (Figure 7.3) that shows the nonzero structure of the connectivity
matrix. The statement

pagerank(U,G)

computes page ranks, produces a bar graph (Figure 7.4) of the ranks, and prints
the most highly ranked URLs in PageRank order.

For the harvard500 data, the dozen most highly ranked pages are

8 Chapter 7. Google PageRank

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

nz = 2636

Figure 7.3. Spy plot of the harvard500 graph.

page-rank in out url

1 0.0843 195 26 http://www.harvard.edu

10 0.0167 21 18 http://www.hbs.edu

42 0.0166 42 0 http://search.harvard.edu:8765/

custom/query.html

130 0.0163 24 12 http://www.med.harvard.edu

18 0.0139 45 46 http://www.gse.harvard.edu

15 0.0131 16 49 http://www.hms.harvard.edu

9 0.0114 21 27 http://www.ksg.harvard.edu

17 0.0111 13 6 http://www.hsph.harvard.edu

46 0.0100 18 21 http://www.gocrimson.com

13 0.0086 9 1 http://www.hsdm.med.harvard.edu

260 0.0086 26 1 http://search.harvard.edu:8765/

query.html

19 0.0084 23 21 http://www.radcliffe.edu

The URL where the search began, www.harvard.edu, dominates. Like most uni-
versities, Harvard is organized into various colleges Harvard Medical School, the
Harvard Business School, and the Radcliffe Institute. You can see that the home
pages of these schools have high PageRank. With a different sample, such as the
one generated by Google itself, the ranks would be different.

9

0 50 100 150 200 250 300 350 400 450 500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
Page Rank

Figure 7.4. PageRank of the harvard500 graph.

Further Reading
Further reading on matrix computation includes books by Demmel [?], Golub and
Van Loan [?], Stewart [?, ?], and Trefethen and Bau [?]. The definitive references on
Fortran matrix computation software are the LAPACK Users’ Guide and Web site
[?]. The Matlab sparse matrix data structure and operations are described in [?].
Information available on Web sites about PageRank includes a brief explanation at
Google [?], a technical report by Page, Brin, and colleagues [?], and a comprehensive
survey by Langville and Meyer [?].

Recap
%% Page Rank Chapter Recap

% This is an executable program that illustrates the statements

% introduced in the Page Rank Chapter of "Experiments in MATLAB".

% You can access it with

%

% pagerank_recap

% edit pagerank_recap

% publish pagerank_recap

%

% Related EXM programs

%

% surfer

% pagerank

%% Sparse matrices

10 Chapter 7. Google PageRank

n = 6

i = [2 6 3 4 4 5 6 1 1]

j = [1 1 2 2 3 3 3 4 6]

G = sparse(i,j,1,n,n)

spy(G)

%% Page Rank

p = 0.85;

delta = (1-p)/n;

c = sum(G,1);

k = find(c~=0);

D = sparse(k,k,1./c(k),n,n);

e = ones(n,1);j

I = speye(n,n);

x = (I - p*G*D)\e;

x = x/sum(x)

%% Conventional power method

z = ((1-p)*(c~=0) + (c==0))/n;

A = p*G*D + e*z;

x = e/n;

oldx = zeros(n,1);

while norm(x - oldx) > .01

oldx = x;

x = A*x;

end

x = x/sum(x)

%% Sparse power method

G = p*G*D;

x = e/n;

oldx = zeros(n,1);

while norm(x - oldx) > .01

oldx = x;

x = G*x + e*(z*x);

end

x = x/sum(x)

%% Inverse iteration

x = (I - A)\e;

x = x/sum(x)

%% Bar graph

bar(x)

title(’Page Rank’)

11

Exercises

7.1 Use surfer and pagerank to compute PageRanks for some subset of the Web
that you choose. Do you see any interesting structure in the results?

7.2 Suppose that U and G are the URL cell array and the connectivity matrix
produced by surfer and that k is an integer. Explain what

U{k}, U(k), G(k,:), G(:,k), U(G(k,:)), U(G(:,k))

are.

7.3 The connectivity matrix for the harvard500 data set has four small, almost
entirely nonzero, submatrices that produce dense patches near the diagonal of the
spy plot. You can use the zoom button to find their indices. The first submatrix
has indices around 170 and the other three have indices in the 200s and 300s.
Mathematically, a graph with every node connected to every other node is known
as a clique. Identify the organizations within the Harvard community that are
responsible for these near cliques.

7.4 A Web connectivity matrix G has gij = 1 if it is possible to get to page i from
page j with one click. If you multiply the matrix by itself, the entries of the matrix
G2 count the number of different paths of length two to page i from page j. The
matrix power Gp shows the number of paths of length p.

(a) For the harvard500 data set, find the power p where the number of nonze-
ros stops increasing. In other words, for any q greater than p, nnz(G^q) is equal to
nnz(G^p).

(b) What fraction of the entries in Gp are nonzero?
(c) Use subplot and spy to show the nonzeros in the successive powers.
(d) Is there a set of interconnected pages that do not link to the other pages?

7.5 The function surfer uses a subfunction, hashfun, to speed up the search for a
possibly new URL in the list of URLs that have already been processed. Find two
different URLs on The MathWorks home page http://www.mathworks.com that
have the same hashfun value.

7.6 Figure 7.5 is the graph of another six-node subset of the Web. In this example,
there are two disjoint subgraphs.

(a) What is the connectivity matrix G?
(b) What are the PageRanks if the hyperlink transition probability p is the

default value 0.85?
(c) Describe what happens with this example to both the definition of PageR-

ank and the computation done by pagerank in the limit p → 1.

7.7 The function pagerank(U,G) computes PageRanks by solving a sparse linear

12 Chapter 7. Google PageRank

alpha

beta

gamma

delta

sigma rho

Figure 7.5. Another tiny Web.

system. It then plots a bar graph and prints the dominant URLs.
(a) Create pagerank1(G) by modifying pagerank so that it just computes the

PageRanks, but does not do any plotting or printing.
(b) Create pagerank2(G) by modifying pagerank1 to use inverse iteration

instead of solving the sparse linear system. The key statements are

x = (I - A)\e

x = x/sum(x)

What should be done in the unlikely event that the backslash operation involves a
division by zero?

(c) Create pagerank3(G) by modifying pagerank1 to use the power method
instead of solving the sparse linear system. The key statements are

G = p*G*D

z = ((1-p)*(c~=0) + (c==0))/n;

while termination_test

x = G*x + e*(z*x)

end

What is an appropriate test for terminating the power iteration?
(d) Use your functions to compute the PageRanks of the six-node example

discussed in the text. Make sure you get the correct result from each of your three
functions.

7.8 Here is yet another function for computing PageRank. This version uses the
power method, but does not do any matrix operations. Only the link structure of
the connectivity matrix is involved.

function [x,cnt] = pagerankpow(G)

13

% PAGERANKPOW PageRank by power method.

% x = pagerankpow(G) is the PageRank of the graph G.

% [x,cnt] = pagerankpow(G)

% counts the number of iterations.

% Link structure

[n,n] = size(G);

for j = 1:n

L{j} = find(G(:,j));

c(j) = length(L{j});

end

% Power method

p = .85;

delta = (1-p)/n;

x = ones(n,1)/n;

z = zeros(n,1);

cnt = 0;

while max(abs(x-z)) > .0001

z = x;

x = zeros(n,1);

for j = 1:n

if c(j) == 0

x = x + z(j)/n;

else

x(L{j}) = x(L{j}) + z(j)/c(j);

end

end

x = p*x + delta;

cnt = cnt+1;

end

(a) How do the storage requirements and execution time of this function com-
pare with the three pagerank functions from the previous exercise?

(b) Use this function as a template to write a function that computes PageR-
ank in some other programming language.

