
Chapter 14

Sudoku

Humans look for patterns, but machines use backtracking.

The fascination that people have for solving Sudoku puzzles without a com-
puter derives from the discovery and mastery of a myriad of subtle combinations
and patterns that provide tips toward the solution. The Web has hundreds of sites
describing these patterns, which have names like “hidden quads”, “X-wing” and
“squirmbag”.

It is not our intention to describe aMatlab program that duplicates these hu-
man pattern recognition capabilities. Instead, our program, like most other Sudoku
computer codes, takes a very different approach, one that relies on the machine’s
almost limitless capacity to carry out brute force trial and error. We use only
one pattern, singletons, together with a fundamental computer science technique,
recursive backtracking.

In the Sudoku world, backtracking is regarding as “guessing” and is considered
bad form. But as a computational technique, it is easy to understand, straightfor-
ward to implement and guaranteed to succeed.

In this chapter, we will describe five Matlab programs for experiments with
Sudoku.

• sudoku. An interactive program that lets you follow the computer solution
process.

• sudoku_basic. The same solution process as sudoku, but without the graph-
ics interface. Much easier to read, and much faster if you just want the
solution.

• sudoku_all. Enumerate all solutions to a Sudoku puzzle. A valid puzzle
should have only one solution.
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2 Chapter 14. Sudoku

• sudoku_assist. An interactive program that lets you control the solution
process, as you would by hand on paper.

• sudoku_puzzle. A collection of interesting puzzles.

Sudoku is actually an American invention. It first appeared, with the name
Number Place, in the Dell Puzzle Magazine in 1979. The creator was probably
Howard Garns, an architect from Indianapolis. A Japanese publisher, Nikoli, took
the puzzle to Japan in 1984 and eventually gave it the name Sudoku, which is a
kind of kanji acronym for “numbers should be single, unmarried.” The Times of
London began publishing the puzzle in the UK in 2004 and it was not long before
it spread back to the US and around the world.
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Figure 14.1. A Sudoku puzzle featuring Lo-Shu, the magic square of order 3.

You probably already know the rules of Sudoku. Figure 14.1 is an example of
an initial 9-by-9 grid, with a few specified digits known as the clues. This particular
puzzle reflects our interest in magic squares. It is the sum of the two matrices shown
in figure 14. The matrix on the left is generated by the functions kron, which
computes something known as the Kronecker product, and magic, which generates
magic squares.

X = kron(eye(3),magic(3))

In this case, a Kronecker product involving the identity matrix produces a block
matrix with three copies of magic(3) on the diagonal. By itself, this array is not
a valid Sudoku puzzle, because there is more than one way to complete it. The
solution is not unique. In order to get a puzzle with a unique solution, we have
added the matrix on the right in figure 14.

Figure 14.3 is the final completed grid. Each row, each column, and each
major 3-by-3 block, must contain exactly the digits 1 through 9. In contrast to
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Figure 14.2. Our Lo-Shu based puzzle is the sum of these two matrices.
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Figure 14.3. The completed puzzle. The digits have been inserted so that
each row, each column, and each major 3-by-3 block contains 1 through 9. The
original clues are shown in blue.

magic squares and other numeric puzzles, no arithmetic is involved. The elements
in a Sudoku grid could just as well be nine letters of the alphabet, or any other
distinct symbols.
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Figure 14.4. Shidoku
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Figure 14.5. Candidates
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Figure 14.6. Insert singleton
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Figure 14.7. Solution

Shidoku
To see how our sudoku program works, we can use Shidoku instead of Sudoku. “Shi”
is Japanese for “four”. The puzzles use a 4-by-4 grid and are almost trivial to solve
by hand. Figure 14.4 is our first Shidoku puzzle and the next three figures show
steps in its solution. In figure 14.5, the possible entries, or candidates, are shown by
small digits. For example, row two contains a 3 and column one contains a 1 so the
candidates in position (2,1) are 2 and 4. Four of the cells have only one candidate
each. These are the singletons, shown in red. In figure 14.6, we have inserted the
singleton 3 in the (4,1) cell and recomputed the candidates. In figure 14.7, we have
inserted the remaining singletons as they are generated to complete the solution.
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Figure 14.8. diag(1:4)
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Figure 14.9. No singletons.
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Figure 14.10. Backtrack step.
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Figure 14.11. Solution is not unique.

The input array for figure 14.8 is generated by the Matlab statement

X = diag(1:4)

As figure 14.9 shows, there are no singletons. So, we employ a basic computer science
technique, recursive backtracking. We select one of the empty cells and tentatively
insert one of its candidates. All of the empty cells have two candidates, so we pick
the first one and tentatively insert a 3 in cell (2,1). This creates a new puzzle,
shown in figure 14.10. Our program is then called recursively. In this example, the
new puzzle is easily solved and the result is shown in figure 14.11. However, the
solution depends upon the choices that we made before the recursive call. Other
choices can lead to different solutions. For this simple diagonal initial condition,
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the solution is not unique. There are two possible solutions, which happen to be
matrix transposes of each other.

Y = shidoku(diag(1:4))

Y =

1 4 2 3

3 2 4 1

4 1 3 2

2 3 1 4

Z = shidoku(diag(1:4)’)’

Z =

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

Existence and uniqueness
Mathematicians are always concerned about existence and uniqueness in the various
problems that they encounter. For Sudoku, neither existence nor uniqueness can
be determined easily from the initial clues. It would be very frustrating if a puzzle
with no solution, or with more than one solution, were to show up in your daily
newspaper.

Uniqueness is an elusive property. In fact, most descriptions of Sudoku do
not specify that there has to be exactly one solution. The only way that I know to
check uniqueness is to exhaustively enumerate all possibilities.

For our magic square puzzle in figure 14.1, if we were to replace the 1 in the
(9,1) cell by a 5, 6 or 7, the row, column and block conditions would still be satisfied.
It turns out that a 5 would produce another valid puzzle with a unique solution,
a 6 would produce a puzzle with two possible solutions, and a 7 would produce a
puzzle with no solution. An exercise asks you to verify these claims.

It takes sudoku_all a little over half an hour on my laptop to determine that
the magic square puzzle generated by

X = kron(eye(3),magic(3))

without the addional entries on right in figure 14 has 283576 solutions.
The puzzle generated by

X = sudoku_puzzle(13)

has an interesting spiral pattern. But there are over 300 solutions. An exercise asks
you to find out exactly how many.
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A number of operations on a Sudoku grid can change its visual appearance
without changing its essential characteristics. All of the variations are basically the
same puzzle. These equivalence operations can be expressed as array operations in
Matlab. For example

p = randperm(9)

z = find(X > 0)

X(z) = p(X(z))

permutes the digits representing the elements. Other operations include

X’

rot90(X,k)

flipud(X)

fliplr(X)

X([4:9 1:3],:)

X(:,[randperm(3) 4:9])

The algorithm
If we do not count the comments and GUI, sudoku.m involves less than 40 lines of
code. The outline of the main program is:

• Fill in all singletons.

• Exit if a cell has no candidates.

• Fill in a tentative value for an empty cell.

• Call the program recursively.

sudoku and sudoku basic
Here is the header for sudoku_basic.

function [X,steps] = sudoku_basic(X,steps)

% SUDOKU_BASIC Solve the Sudoku puzzle using recursive backtracking.

% sudoku_basic(X), for a 9-by-9 array X, solves the Sudoku puzzle for X

% without providing the graphics user interface from sudoku.m

% [X,steps] = sudoku_basic(X) also returns the number of steps.

% See also sudoku, sudoku_all, sudoku_assist, sudoku_puzzle.

This first bit of code checks nargin, the number of input arguments, and initializes
the step counter on the first entry. Any subsequent recursive calls will have a second
argument.

if nargin < 2

steps = 0;

end
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These comments describe the primary variables in the program.

% C is the array of candidate values for each cell.

% N is the vector of the number of candidates for each cell.

% s is the index of the first cell with the fewest candidates.

The program fills in any singletons, one at a time. The candidates are recomputed
after each step. This section of code, by itself, can solve puzzles that do not require
backtracking. Such puzzles can be classified as “easy”.

[C,N] = candidates(X);

while all(N>0) & any(N==1)

s = find(N==1,1);

X(s) = C{s};

steps = steps + 1;

[C,N] = candidates(X);

end

If filling in the singletons does not solve the puzzle, we reach the following section
of code that implements backtracking. The backtracking generates many impossi-
ble configurations. The recursion is terminated by encountering a puzzle with no
solution.

if all(N>0)

Y = X;

s = find(N==min(N),1);

for t = [C{s}] % Iterate over the candidates.

X = Y;

X(s) = t; % Insert a tentative value.

steps = steps + 1;

[X,steps] = sudoku_basic(X,steps); % Recursive call.

if all(X(:) > 0) % Found a solution.

break

end

end

end

All of the bookkeeping required by backtracking is handled by the recursive call
mechanism in Matlab and the underling operating system.

The key internal function for sudoku is candidates. Here is the preamble.

function [C,N] = candidates(X)

% C = candidates(X) is a 9-by-9 cell array of vectors.

% C{i,j} is the vector of allowable values for X(i,j).

% N is a row vector of the number of candidates for each cell.

% N(k) = Inf for cells that already have values.
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The following statement creates an internal function named tri that computes
the indices for blocks. For example, tri(1), tri(2) and tri(3) are all equal to
1:3 because the block that includes a cell with row or column index equal to 1, 2
or 3 has row or column indices 1:3.

tri = @(k) 3*ceil(k/3-1) + (1:3);

Here is the core of candidates.

C = cell(9,9);

for j = 1:9

for i = 1:9

if X(i,j)==0

z = 1:9;

z(nonzeros(X(i,:))) = 0;

z(nonzeros(X(:,j))) = 0;

z(nonzeros(X(tri(i),tri(j)))) = 0;

C{i,j} = nonzeros(z)’;

end

end

end

For each empty cell, this function starts with z = 1:9 and uses the numeric values
in the associated row, column and block to zero elements in z. The nonzeros that
remain are the candidates. For example, consider the (1,1) cell in figure 14.1. We
start with

z = 1 2 3 4 5 6 7 8 9

The values in the first row change z to

z = 1 0 0 0 5 6 7 8 9

Then the first column changes z to

z = 1 0 0 0 5 0 7 0 9

The (1,1) block does not make any further changes, so the candidates for this cell
are C{1,1} = [1 5 7 9].

The candidates function concludes with the following statements. The num-
ber of candidates, N(i,j) for cell (i,j) is the length of C{i,j}. If cell (i,j)
already has a value, then X(i,j) is nonzero, C{i,j} is empty and so N(i,j) is
zero. But we make these N(i,j) infinite to distinguish them from the cells that
signal an impossible puzzle.

N = cellfun(@length,C);

N(X>0) = Inf;

N = N(:)’;
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An example, puzzle number one
Figure 14.12 shows the key steps in the solution of our Lo-Shu puzzle. The initial
candidates include just one singleton, the red 5 in position (3,9). Five steps with
five singletons allow us to fill in the cells with green 5’s and 8’s. We now consider the
first cell with two candidates, in position (6,1). The first step in the backtracking
puts a tentative 6 in position (6,1). Blue values are the initial clues, cyan values are
generated by the backtracking and green values are implied by the others. After five
steps we reach an impossible situation because there are no candidates for position
(6,2). Try again, with a 7 in position (6,1). This puzzle is easily completed by filling
in singletons. The title on the final solutions shows that it took 50 steps, including
the abortive ones in the first backtrack, to reach the solution.
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Recap
%% Sudoku Chapter Recap

% This is an executable program that illustrates the statements

% introduced in the Sudoku Chapter of "Experiments in MATLAB".

% You can access it with

%

% sudoku_recap

% edit sudoku_recap

% publish sudoku_recap

%

% Related EXM programs

%

% sudoku

% sudoku_all

% sudoku_assist

% sudoku_basic

% sudoku_puzzle
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%% Disclaimer

% Our Sudoku chapter and Sudoku program depend heavily

% upon recursion, which cannot be done by this script.

%% Sudoku puzzle incorporating the Lo-Shu magic square.

X = kron(eye(3),magic(3))

C = full(sparse([9 8 4 3 7 6 2 1], [1:4 6:9], [1 2 3 1 3 1 8 3]))

X = X + C

% Also available as

X = sudoku_puzzle(1);

%% Transforms of a Sudoku puzzle

T = X;

p = randperm(9);

z = find(X > 0);

T(z) = p(X(z))

X’

rot90(X,-1)

flipud(X)

fliplr(X)

X([4:9 1:3],:)

X(:,[randperm(3) 4:9])

%% Candidates

% C = candidates(X) is a cell array of vectors.

% C{i,j} is the set of allowable values for X(i,j).

C = cell(9,9);

tri = @(k) 3*ceil(k/3-1) + (1:3);

for j = 1:9

for i = 1:9

if X(i,j)==0

z = 1:9;

z(nonzeros(X(i,:))) = 0;

z(nonzeros(X(:,j))) = 0;

z(nonzeros(X(tri(i),tri(j)))) = 0;

C{i,j} = nonzeros(z)’;

end

end

end

C

%% First singleton and first empty.
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% N = number of candidates in each cell.

% s = first cell with only one candidate.

% e = first cell with no candidates.

N = cellfun(@length,C)

s = find(X==0 & N==1,1)

e = find(X==0 & N==0,1)

%% Sudoku puzzles

help sudoku_puzzle

for p = 1:16

sudoku_puzzle(p)

end

Exercises

14.1 xkcd. Solve the binary Sudoku puzzle by Randal Munroe in the Web comic
strip xkcd at

http://xkcd.com/74

14.2 Solve. Use sudoku to solve a puzzle from a newspaper, magazine, or puzzle
book. Use sudoku_assist to solve the same puzzle by hand.

14.3 sudoku puzzle. The exm program sudoku_puzzle generates 16 different puzzles.
The comments in the program describe the origins of the puzzles. How many steps
are required by sudoku_basic to solve each of the puzzles?

14.4 By hand. Use sudoku_assist to solve our Lo-Shu based puzzle by hand.

X = sudoku_puzzle(1);

sudoku_assist(X)

14.5 Modify puzzle #1. The following program modifies the lower left hand clue in
our Lo-Shu based puzzle. What happens with each of the resulting puzzles?

X = sudoku_puzzle(1);

for t = [0 1 5 6 7]

X(9,1) = t;

sudoku_all(X)

end
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14.6 Try this. Try to use sudoku_assist to solve this puzzle by hand.

X = sudoku_puzzle(1);

X(9,1) = 7;

sudoku_assist(X)

14.7 Puzzle #3. How many solutions does sudoku_puzzle(3) have? How do they
differ from each other?

14.8 Puzzle #13. How many solutions does sudoku_puzzle(13) have? In addition
to the initial clues, what values are the same in all the solutions?

14.9All solutions. What are the differences between sudoku_basic and sudoku_all?

14.10 Combine. Combine sudoku_all and sudoku_basic to create a program that
returns all possible solutions and the number of steps required to find each one.
Try your program on sudoku_puzzle(13). What is the average number of steps
required? Hints: if S is a cell array where each cell contains one numeric value, then
s = [S{:}] creates the corresponding vector. And, help mean.

14.11 Search strategy In sudoku_basic, the statement

s = find(N==min(N),1);

determines the search strategy. What happens when you change this to

s = find(N==min(N),’last’);

or

s = find(X==0,’first’);

14.12 Patterns. Add some human puzzle solving techniques to sudoku.m. This will
complicate the program and require more time for each step, but should result in
fewer total steps.

14.13 sudoku alpha. In sudoku.m, change int2str(d) to char(’A’+d-1) so that
the display uses the letters ’A’ through ’I’ instead of the digits 1 through 9. See
figure 14.13. Does this make it easier or harder to solve puzzles by hand.

14.14 sudoku16. Modify sudoku.m to solve 16-by-16 puzzles with 4-by-4 blocks.
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Figure 14.12. The key steps in the solution of our Lo-Shu puzzle.
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Figure 14.13. Use the letters ’A’ through ’I’ instead of the digits 1 through 9.


