Best Practices for Establishing a Culture of Model-Based Design

Paul Smith,

Director – North American Consulting Services

The MathWorks
Review: Benefits of Model-Based Design

- Simulation enables validation and documentation of requirements
- Requirements models are reused to generate code and documentation
- Test cases are reused to verify deployed application
- Results:
 - Improved quality
 - Reduced time to market
 - Capability to develop more complex systems
Adoption of Model-Based Design

What happens in the “real world”? Why do organizations adopt Model-Based Design?

- Corporate mandate
- 6 Sigma / quality initiatives
- Young engineers used it in college
- It’s more fun than writing C
Transformational Levels for the Adoption of Model-Based Design

From Phil Martens, Ford Motor Co., 2003 DARATECH Conference
Best Practice # 1: *Identify the problem you are trying to solve*

- Have metrics that identify the weak points in your current process
- Attack your greatest weaknesses first
- Monitor your Return on Investment (ROI)

Example 1: Can’t hit release dates
Example 2: Excessive software defects
Example 3: Availability of prototype hardware
Best Practice # 2:
Use models for at least two things – “Rule of Two”

- Overcome startup costs and resistance to change
- ROI increases with multi-use models

Example 1: Validate requirements through simulation and add new functionality through rapid prototyping

Example 2: System specification and automatic code generation
Best Practice # 3: **Use models for production code generation**

- To ensure success you must connect models to real system
- Enable a culture of modeling by removing temptation and option to write code
- Executable code is what makes machines move and generates profits
Best Practice # 4:
Treat models as the sole source of truth

- Remove the temptation to hack code by hand late in a program when under time pressure
- Prevent divergence of code and model
Best Practice # 5:
Use migration as a learning opportunity

- Learn what really happens in the current system
- Solicit help on process and tools, not on translation
- Focus on value-added features first
- Conversion is a tremendous learning and quality improvement opportunity
 - True even in small code footprints and efficient organizations
Best Practice # 6: Focus on design, not on coding

- Software design is still taking place

- Software engineers establish and manage the code generation infrastructure

- Model refinement continues after the controls engineers finish their work and before the model is ready to generate code, especially in a fixed-point implementation

- Legacy code must be integrated and maintained
Best Practice # 7: Integrate the development process

- Develop a comprehensive plan:
 - Training
 - Modeling Style
 - Enforcement.
 - Supporting Tools
 - Configuration Management
 - Requirements Management
 - Process

- Develop new metrics

Measuring Productivity and Quality in Model-Based Design

Arvind Rao, MathWorks
Mark Smith, MathWorks

ABSTRACT

Accurate measurements of productivity and quality are essential for business success. Using Model-Based Design, MathWorks provides toolset products that support all the disciplines of Model-Based Design. This paper provides a brief overview of Model-Based Design and introduces a practical approach to measuring productivity and quality.

INTRODUCTION

Model-Based Design is a method for developing complex systems using software models. It allows developers to create, simulate, and verify models before committing to hardware and software development.

MODEL-BASED DESIGN

Model-Based Design allows developers to:
- Reduce development time and costs
- Improve system quality and reliability
- Enhance collaboration and communication

OVERVIEW OF MODEL-BASED DESIGN

Model-Based Design uses the Model Inversion method to convert models into executable code. This method allows developers to:
- Generate code directly from models
- Use simulation to verify and validate models
- Reduce the risk of errors and improve system quality

The benefits of Model-Based Design include:
- Improved productivity and quality
- Reduced development time and costs
- Enhanced collaboration and communication

MODEL-BASED DESIGN: A practical approach to measuring productivity and quality

MathWorks offers a comprehensive suite of products that support Model-Based Design, including: MATLAB, Simulink, and Stateflow.

MathWorks
Aerospace and Defense Conference ’07
Best Practice # 8: Designate champions with influence, expertise, and budgetary control

Business champion:
- Assigns overall priorities
- Assigns people
- Acquires tools, equipment, and services
- Sometimes act as a consensus builder
- Sometimes act as a benevolent dictator
- Handles issue escalation

Technical champion:
- Assigns technical priorities
- Is point of contact for Model-Based Design issues
- Attends MathWorks Advisory Boards
- May also be business champion in some organizations
Best Practice # 9:
Have a long-term vision

- Good things come to those who have a vision and work hard to achieve it
- The full transition from hand-coded, textual languages takes 2-3 years to fully implement in a production organization
- Research organizations often have fewer constraints and less legacy code, and can move faster
- Be flexible
 - Don’t get bogged down with needs derived from traditional approaches (paving the cow paths)
 - Be receptive to workarounds
 - Plan for migration
Best Practice # 10:

Partner with your tool suppliers

Suppliers bring the experience of working with entire industries and can help you avoid common pitfalls, accelerate your ROI breakeven point, and quickly achieve productivity and quality goals.