Developing Communications and ISR Systems Using MATLAB® and Simulink®

Kerry Schutz
Application Engineer
UAV-based Communications and ISR
Model-Based Design Workflow

Research
- Data Analysis
- Algorithm Development
- Data Modeling

Design
- Algorithm Development
- Environment Models
- Physical Components
- Algorithms

Implement
- MCU
- DSP
- FPGA
- ASIC

Integration
- Test Environments
- Continuous V&V

Requirements
UAV-based Communications and ISR
Design and Integrate a Video Communications System for a UAV

- Design and simulate 3 different system components
 - Antenna pointing control
 - Communications link
 - Video codec and post-processing
- Integrate the components to evaluate overall impact on system performance
Core MathWorks Products

SIMULINK

The leading environment for modeling, simulating, and implementing dynamic systems

- Foundation for Model-Based Design

- Multi-Domain Modeling

- Platform for System Integration

- Open architecture with links to third-party modeling tools, IDEs, and test systems
Demonstration
Low Bit Error Rate and Other Intensive Computations

- Don’t let graphics be the bottleneck
 - Turn off scopes after you have debugged the model
- Use Simulink Accelerator
 - Additional optimizations are performed during initialization
- Use frame-based processing feature of Signal Processing Blockset
 - Frames are sequences of samples, grouped together for execution
 - Model natural characteristic of many hardware and software systems such as voice coders and modulators
 - Faster simulation versus sample-based signals
- Use distributed computing ("server farm")
Run **Four Local** Workers with a Parallel Computing Toolbox License

- Easily experiment with explicit parallelism on multicore machines
- Rapidly develop parallel applications on local computer
- Take full advantage of desktop power
- Separate computer cluster not required
Scale Up to Cluster Configuration with No Code Changes
End Results

- Designed and verified a communications sub-system
- Integrated an antenna pointing model
- Integrated a video processing unit
- Integrated a COTS video codec using legacy code tool

Multi-Domain Modeling

Platform for System Integration

Next step: incorporate this model into a broader system simulation that models flight dynamics, target tracking, etc.
Products Used

- **Simulink**
 - Embedded MATLAB block
- **Video and Image Processing Blockset**
 - Segmentation, motion estimation, morphology, and more
- **Communications Blockset**
 - Source coding, error correction, modulation, and more
 - Interfaces to RF blockset for modeling front-end effects
- **Signal Processing Blockset**
 - Estimation, filtering, linear algebra, statistics, FFT, and more
- **SimMechanics**
 - Physical Modeling
Thank You for Attending