Brain Imaging Data Analysis with MATLAB: from Pictures to Knowledge

MATLAB EXPO, Bern, June 22, 2017

Dr. Henry Lütcke, Scientific IT Services (SIS), ETH Zürich
“We work closely with ETH researchers to enable research and improve efficiency by providing first-class scientific computing services.”
Outline

- Importance of quantitative imaging analysis in neuroscience
- Image analysis examples
 - Signal extraction from noisy neuronal activity measurements
 - Machine learning based quantification of neuronal network activity
- From small to Big Data
 - Scalable analysis with cluster computing
Neuroscience: Understanding the Brain

What is the brain made of? How does it work?
Neuroscience: Understanding the Brain

“As long as our brain is a mystery, the universe – as reflection of the structure of the brain – will also remain a mystery.”

Santiago Ramón y Cajal (1852-1934)
Burden & Cost of Brain Disease

Deep-brain stimulation in Parkinson’s disease

youtube.com/watch?v=mO3C6iTpSGo
Disorders of the brain are extremely disabling and incur enormous costs for patients, relatives and society!
The Brain consists of a Large Network of Neurons

The brain consists of a large number of diverse nerve cells (neurons), which communicate via specialized contacts (synapses).

Imaging plays a critical role in revealing brain structure and function.
Importance of Imaging in Neuroscience

around 1900

around 2000

Imaging at different scales

Single cells / sub-cellular (microscopic)

Networks (mesoscopic)

Brain (macroscopic)

Ramón y Cajal (1852-1934)
Generic Workflow for Image Analysis

1. **Acquisition**
 - Raw Data

2. **Preprocessing**
 - Filtered Data
 - Noise, Artefacts, ...

3. **Reduction**
 - Reduced Data
 - Regions of interest, Interpolation, ...

4. **Data Analytics**
 - Knowledge
 - Confirm / reject hypotheses

- **Customized (Manufacturer, in-house)**
- **Image Proc.**
 - Signal Proc.
 - ...
- **Image Proc.**
 - GUIs
 - ...
- **Statistics & ML**
 - Curve Fitting
 - ...
In vivo Two-Photon Microscopy

- **Excite**
 - **Tunable pulsed NIR laser** (700–1,000 nm)

- **Detect**
 - **Epicollection**
 - **Collection lens**

Reduced Scattering
- **Single Photon**
- **Two-Photon**

Point Excitation
- **488 nm**
- **960 nm**

*Denk et al., Science 1990
Svoboda et al., Nature 1997*
Example 1: Denoising and signal extraction

Effect of noise

Other algorithms (all MATLAB-based):

- OOPSI (Vogelstein et al., 2010)
- MLspike (Deneux et al., 2016)
- CNMF (Pnevmatikakis et al., 2016)
Denoising and signal extraction

A MATLAB-based simulation framework for systematic evaluation of reconstruction algorithms.

See Lütcke et al., 2013
Generic Workflow for Image Analysis

- **Acquisition**
- **Raw Data**
 - Noise, Artefacts, …
 - Preprocessing
 - Reconstruction

- **Filtered Data**
- **Reduced Data**
 - ROIs, Interpolation, …
 - Reduction

- **Data Analytics**
- **Knowledge**
 - Confirm / reject hypotheses
Quantifying Network Activity with Machine Learning

Population vector in N-dimensional space (N ... no. of neurons)

For $N = 2$:

Classification Algorithms

- Support Vector Machine
- Naive Bayes
- Random Forest

Statistics & Machine Learning Toolbox

Supervised Learning Approach

- **Data**
 - Training Splits
 - Data 1
 - Labels 1
 - Data 2
 - Labels 2
 - Test Splits
 - Data 1
 - Labels 1
 - Data 2
 - Labels 2

For each cross-validation split

- Training Data
- Training Labels
- Classifier.train
- Classifier.test
- Predicted Labels
- Test Labels
- Accuracy
Example 2: Quantifying Network Activity with Machine Learning

Leitner et al., 2016

How is odor information encoded by different neuronal sub-networks?
Machine learning analysis reveals that odor information is differentially encoded in defined neuronal sub-networks!
Towards Quantitative Big Imaging Analysis

- More neurons, better resolution, longer recordings → Increased data size & complexity
- Existing analysis workflows based on desktop PCs scale poorly
- Need for scalable, cluster-based analysis pipelines

MATLAB
Distributed Computing Server

10 – 50 neurons
100’s of MB / h

T. Rose, MPI Neurobiology

100s of neurons
10’s of GB / h

Ahrens et al., Nat Meth, 2013

> 10’000 neurons
100’s of GB - TBs / h
High-Performance Computing @ ETH Zürich

Euler I & II clusters (Euler III added in 2017)

Euler I
- 448 compute nodes with two 12-core Intel Xeon E5-2697v2 CPUs
- 64 - 256 GB RAM

Euler II
- 768 compute nodes two 12-core Intel Xeon E5-2680v3 CPUs
- 64 - 512 GB RAM

Euler III
- 1215 compute nodes with one quad-core Intel Xeon E3-1285Lv5 CPUs
- 32 GB RAM / 256 GB NVMe flash drive
Big Data Analysis with MATLAB @ ETH Zürich

MATLAB
Distributed Computing Server

Interactive Mode
Parallel for loop

```
cluster = parcluster('Euler');
poolobj = parpool(cluster, 10);
acc = 0;
parfor i = 1:1000
    acc = acc + i^2;
end
```

Cluster-scale computing power combined with the convenience of the MATLAB desktop!
Big Data Analysis with MATLAB @ ETH Zürich

ML-based Image Analysis with MDCS or custom MATLAB-Spark integration

Up to 17x faster analysis with distributed cluster computing!
Summary & Conclusions

- Imaging techniques are crucial for understanding the brain and ultimately develop better cures
- Recent shift from qualitative to quantitative imaging
- Image analysis skills & techniques are becoming critical
- MATLAB is applied at all stages and has many advantages
 - Intuitive for novices, powerful for experts
 - Excellent documentation
 - Allows rapid code development / profiling
 - Established in the community
 - Parallelization / scalability
Future Challenges

- Analysis of millions of neurons
- Real-time analysis and targeted manipulations
- Leverage power of deep-learning approaches
- Further standardization of analysis toolbox

T. Rose, MPI Neurobiology
Acknowledgments

Scientific IT Service (ETH Zürich)
Rok Roškar
Balazs Laurenczy
Urban Borstnik
Thomas Wüst
Bernd Rinn

Brain Research Institute (University of Zürich)
Fritjof Helmchen

German Cancer Research Center (DKFZ, Heidelberg)
Hannah Monyer
Frauke Leitner

Thank you for your attention!