MATLAB EXPO 2017
Motor Controls Implementation on Systems-On-Chip

Vasco Lenzi
Key Takeaways

Meet stringent requirements and lower costs

Reduce hardware testing time up to 5x

Manage design complexity and improve team collaboration
Punch Powertrain develops complex SoC-based motor control

- Powertrains for hybrid and electric vehicles
- Hardware choice through simulations
- Traditional microcontroller too slow
- No experience designing FPGAs!

- Designed integrated E-drive: Motor, power electronics and software
- 4 different control strategies implemented
- Done in 1.5 years with 2FTE’s
- Models reusable for production
- Smooth integration and validation due to development process
Key trend: Increasing demands from motor drives
Systems-on-Chip for motor control
Key Trend: SoCs are now used in 36% of new FPGA projects

Challenges in using SoCs for Motor and Power Control
Why use Model-Based Design to develop motor control applications on SoCs?
ZedBoard

Zynq SoC (XC7Z020)

FMC module: control board + low-voltage board

Load motor

Mechanical coupler

Motor under test (with encoder)
Field-Oriented Control of Velocity Hardware/Software Test Bench

Copyright 2015-2017 The MathWorks, Inc.

Command Type

Velocity Command and Response

Controller Mode

Current

Time (secs)
Conceptual workflow targeting SoCs

System Simulation Test Bench

Algorithm C Model

Algorithm HDL Model

Model of Motor & Dyno

Linux / VxWorks Reference Framework

Algorithm C Code

Algorithm HDL Code

Programmable Logic Reference Framework

SoC Hard Processor

SoC Programmable Logic

Motor & Dyno Hardware

Embedded System

Algorithm developer

Hardware designer

Embedded software engineer

MATLAB EXPO 2017
Hardware/software partitioning

Target to ARM

Target to Programmable Logic
Code Generation
Field-Oriented Control of Velocity
Zynq ARM Deployment for AD-FMCMOTCON2

Copyright 2015-2016 The MathWorks, Inc.
3T Develops Robot Emergency Braking System with Model-Based Design

Challenge
Design and implement a robot emergency braking system with minimal hardware testing

Solution
Model-Based Design with Simulink and HDL Coder to model, verify, and implement the controller

Results
- Cleanroom time reduced from weeks to days
- Late requirement changes rapidly implemented
- Complex bug resolved in one day

"With Simulink and HDL Coder we eliminated programming errors and automated delay balancing, pipelining, and other tedious and error-prone tasks. As a result, we were able to easily and quickly implement change requests from our customer and reduce time-to-market."

Ronald van der Meer
3T

A SCARA robot.
Key Takeaways

- Meet stringent requirements and lower costs
- Reduce hardware testing time up to 5x
- Manage design complexity and improve team collaboration
Learn More

- Get an in-depth demo in the Technology Showcase
 - discuss the award-winning Native Floating Point in HDL Coder!

- Videos
 - [HDL Coder: Native Floating Point](#)

- Webinars
 - Prototyping SoC-based Motor Controllers on Intel SoCs with MATLAB and Simulink
 - How to Build Custom Motor Controllers for Zynq SoCs with MATLAB and Simulink

- Articles
 - How Modeling Helps Embedded Engineers Develop Applications for SoCs (MATLAB Digest)
 - MATLAB and Simulink Aid HW-SW Codesign of Zynq SoCs (Xcell Software Journal)

- Tutorials:
 - Define and Register Custom Board and Reference Design for SoC Workflow
 - Field-Oriented Control of a Permanent Magnet Synchronous Machine on SoCs