Speedgoat Baseline in a Formula Student Racecar
Formula Student

- International Engineering Competition
- 553 Teams Combustion
- 110 Teams Electric
- 17 Driverless
- Design, fabricate and compete with formula style race car
Competition overview

Dynamic Events (68%)

- Efficiency 100 Pkt.
- Endurance 275 Pkt.
- Autocross 125 Pkt.
- Skid Pad 75 Pkt.
- Acceleration 100 Pkt.

Static Events (32%)

- Business Plan 75 Pkt.
- Cost Report 100 Pkt.
- Engineering Design 150 Pkt.
GreenTeam Uni Stuttgart

- Founded 2009
- 40 future engineers from different fields of studies
- Competes in 4-5 international Formula Student competitions per year
- Currently 6th Place in World Ranking
- Achievements 2016
 - Formula Student Austria
 - 3. Place Overall
 - Formula Student Germany
 - 3. Place Overall
 - 2. Place Engineering Design
Former Cars of GreenTeam

8 Years of Innovation Effort Success
The E0711-8

Highlights
- 4x 35kW In-Wheel Motors
- 0-100 km/h < 2s
- Oil-cooled accumulator
- Aerodynamik Package with DRS
- Torque Vectoring
- Carbon Fiber Monocoque
- Monospring System:
 - Pitch and Roll Dynamics independently adjustable
Requirements Vehicle Dynamics ECU

Tasks / Responsibilities
- Torque Vectoring
- Traction Control
- Power / Recuperation Limit
- Sensorfusion / Drift correction
- Tire Load Estimation
- Etc.

Requirements
- High processing power
- Fast optimization algorithms
- Rapid Prototyping
- Easy Integration
- Live Measurement
- Live Parametrization
Speedgoat Baseline

- Simulink Real-Time Target Machine
- Intel Quad Core CPU
- Interchangable IO-Cards
- Broad Range of I/Os and Protocols supported
- Full workflow support for Mathwork’s Products
Speedgoat Baseline inside E0711-8

- Measurements: Sensors, Motor Torques, EtherCAT, Motor Revolutions /s, Motor Temperatures, Data logger, Telemetry system
- Ethernet / UDP: Measurements to Inverter

Inverter

Data logger
Telemetry system
1. Requirements
 • Prevent excessive slip
 • Use full potential of tires

2. System Analysis
 • Elastic material
 • External influences
 • Nonlinear behaviour

3. Define controller
 • Control Method
 • Cycle time
 • Estimated information needed?
Workflow Controller Development – Implementation and Simulation

Traction Control Implementation

Vehicle Model (Simulink)

Torque Command

Wheel Slip
Workflow Controller Development - Application

Flashing over telemetry

Simulink Model

Code Generation
Workflow Controller Development - Application

Data Logger

Replay to Simulink Modell

For Deeper Analysis And Debugging

Protocol: XCP over Wifi

Parametrization Measurement Data
- Video: First Testing of Traction Control
Conclusion und Outlook

- Why Speedgoat baseline?
 - Sufficient computing power
 - Connectivity
 - Packaging
 - Simulink Integration

- Plans for Future
 - Use as motor controller
 - Smaller version for more specialised application
Special Thanks to Speedgoat and Mathworks for the Support

MathWorks

speedgoat
real-time simulation and testing
More Information on GreenTeam Uni Stuttgart e.V

http://greenteam-stuttgart.de
- Workflow Reglerentwicklung – vom Konzept zum fahrenden Auto
- Nur Simulink
 - Theoretische Konzeption
 - Implementierung als Simulinkmodell
 - Simulation an selbstentwickeltem Fahrzeugmodell
- Mit Speedgoat
 - Regler wird in Speedgoat-Modell eingebunden
 - Flashen ins Fahrzeug über WLAN
 - Live-Telemetrie (Scopes, Setzen von Parametern)
 - Mit Bildmaterial vom Einsatz
Workflow Controller Development – On-Track-Testing and Analysis

Data Logger

Replay to Simulink Modell

For Deeper Analysis And Debugging

Parametrization Measurement Data

Protocol: XCP over Wifi

For Deeper Analysis And Debugging
Workflow am Beispiel Traktionskontrolle – Applikation

Simulink Model

Code Generation

Flashing over telemetry

Parametrization Measurement Data

Protocol: XCP over Wifi