Functional testing via statistical and behavioral signatures for Engine Management Systems Using Matlab/Simulink

Christo Prakash and Vijith Natarajan
Engine Powertain Control

www.continental-corporation.com Powertrain Division
Conventional Test Procedure
Modified Test Procedure

Development Process

System Requirements

Conception

Software Requirements Specification

Software Design

SW Design Document

Coding

Module Verification

Verified Modules

Software Integration

Integrated Software

Integration and Regression Tests

Tested Integrated Software

Delivery to Customer

Modified Test Procedure
Model based design work flow

- Processor dependent model
- Fixed point model
- Floating point model
Model based design work flow

- Processor dependent model
- Floating point model
- Fixed point model

1. Requirements
2. Implement Floating Point Model
3. Prepare and Run Test cases
4. Model = Requirements
 - Yes: Store Test Results and Test Report
 - No: Return to Implement Floating Point Model
Model based design work flow

1. Fixed Point conversion and Scaling
2. Run test cases again with same test inputs as floating point model
3. Fixed Point Results = Floating Point Results
 - Yes: Store Test Results and Test Report
 - No: If Mismatch
 - Due to Scaling: Update the floating point model and repeat
 - Due to design problem: Update the floating point model and repeat
Model based design work flow

Floating point model
Processor dependent model
Fixed point model

Generate Code
Test Software and Processor dependencies
If Results Matching with Fixed Point results
Yes
Generate Reports and document
No
If Mismatch
Due to scaling
Update the floating point model and repeat
Due to design problem
Update Fixed Point Model
Model based testing work flow

![Diagram of the model based testing workflow]

- Prepare Test Cases
- Test Vector Creation
- Module Under Test
- Test Execution
- Store Test Log and Generate Reports
Model based testing framework

- **Test Manager**—Centralized environment for creating and managing Test vectors and Test cases

![Diagram showing Test Resources and Select phase]
Identification of range of the cut off frequency for fuel tank level monitoring using model based testing
Matlab/Simulink model
Matlab/Simulink model
Simulation Results

Case 1: Cut off frequency 0.5

Sensor input signal

Filtered output signal
Simulation Results

Case 2: Cut off frequency 0.08

Sensor input signal

Filtered output signal
Simulation Results

Final Iterative simulation result

Filtered tank volume

Final tank volume
Simulation Results

<table>
<thead>
<tr>
<th>Filter Coefficient</th>
<th>Signal strength</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Noisy signal</td>
<td>☹</td>
</tr>
<tr>
<td>0.08</td>
<td>Filtered signal</td>
<td>☻</td>
</tr>
</tbody>
</table>

From the simulation results it is evident that our system is stable and defect free at the design stage itself.

Hence a drastic reduction in the effort spend on HIL /vehicle testing and design rework at later stages.
Challenges faced

Centralized data base management for the environmental model.

Onetime effort to create the environmental model and training the software developer
Conclusion

The authors feel that with Model based testing the quality of software increases due to the simulation and test capability of MATLAB and the knowledge of the developer.

From the case study and the test framework used it is concluded that better understanding of the vehicle real time behavior and any unforeseen behavior problems can be corrected.

The effective model based testing showed the improved accuracy of the calibration in order to fine tune the vehicle performance.
Thank you for your attention!