Intelligent Battery Health Monitoring System

MATLAB EXPO
2017

Rohit Tiwari
Pavan Kumar Kodali
Electronic Reliability
Mahindra Research Valley
Chennai
Intelligent Battery Health Monitoring

• Agenda

1. • Introduction

2. • Problem Statement

3. • Approach

4. • Results

5. • Conclusion
• Introduction

➢ As the electrical vehicle market is growing, research on battery management system has got more attention.

➢ SOH (state of health) of battery is most crucial factor which decides the driving mileage and also the replacement time of the battery.
Intelligent Battery Health Monitoring

• Problem statement
 ➢ Battery failure can cause loss in operation, reduce the capacity and in vehicle it can cause the fatal accident.
 ➢ To ensure that battery operate within design limits and storage life time, effective battery health monitoring is required.
 ➢ Monitoring evaluation can also provide the remaining charge information and warn when the limits exceeds.
Intelligent Battery Health Monitoring

• Approach
 ➢ The proposed system will automatically predict the battery health based on the SOH calculated from battery time capacity.
 ➢ Multiscale entropy (MSE) and SOH are used as data input and target vector for learning algorithm.
 ➢ The neuro fuzzy classifier (ANFC), an adaptive network based system in which antecedent parameters are adapted with neural network, is used as a learning algorithm.
Intelligent Battery Monitoring

• Approach

Battery Data → Feature Extraction (MSE) → ANFC Testing

Battery Capacity → ANFC Training

Estimated SOH → Perform. → Battery Prognostics
Intelligent Battery Health Monitoring

- Experimental setup

 - dataset provided by the data repository of NASA Ames Prognostic center of Excellence (PCoE) is used here for the validation of the proposed system.

 - In the experiment Li-ion batteries go through three different profiles (charge, discharge and impedance) at room temperature.

 - The charge and discharge cycle increase the aging of batteries. While the impedance measurement present the insight into the battery internal parameters that change as aging accelerate.

 - The EOL (end of life criteria) is 30% fade in rated capacity (2Ahr to 1.4 Ahr) for these batteries.
Intelligent Battery Health Monitoring

• Experimental setup
Intelligent Battery Health Monitoring

• Experimental setup
 - discharge voltage shows that cells will not have the same end of discharge at the same cycle index because of variation in depth of discharge and rest period.
 - This ambiguity shall represent the actual usage.
Intelligent Battery Health Monitoring

• Multiscale Entropy
 ➢ Multi scale entropy provides the way to measure complexity over the range of scale.
 ➢ MSE method incorporate two procedure
 1. Construct coarse-grain series
Intelligent Battery Health Monitoring

• Multiscale Entropy

1. Calculate sample Entropy

\[
SE = -\ln \left[\frac{x^m(r)}{y^m(r)} \right]
\]

Here \(x^m(r)\) & \(y^m(r)\) represent two sequence will match for \(m\) points and \(m+1\) points

➢ MSE is implemented using the MATLAB.
Intelligent Battery Health Monitoring
Intelligent Battery Health Monitoring

- During the discharge process the sample entropy value reduce with increase in the cycle.
- This relation can indicate the battery degradation.
- At cycle number 46 sample entropy value is higher than the previous cycle, because of variant in depth of discharge in which voltage and rest period is high.
Intelligent Battery Health Monitoring

• State of health (SOH) estimation

➤ SOH is calculated based on the capacity method, that is ratio between nominal capacity of the present time to the initial time.

➤ \[\text{SOH} = \frac{\text{Capacity at present time}}{\text{Capacity at initial time}} \]
Intelligent Battery Health Monitoring

- State of health (SOH) estimation
Intelligent Battery Health Monitoring

• Adaptive Neuro Fuzzy classifier

➢ It is the combined system with fuzzy system qualitative approach and artificial NN adaptive capabilities.

➢ The ANFC explicates a zero order surgeon fuzzy inference model into the framework of a multilayer artificial neural network (ANN) with adaptive and non-adaptive nodes.

➢ MATLAB ANFIS toolbox is used to implement fuzzy inference system with scaled conjugate gradient algorithm.
Intelligent Battery Health Monitoring

• MATLAB ANFIS toolbox
Intelligent Battery Health Monitoring

• Results

![Performance evaluation graphs]

- [Graph 1: Performance evaluation plot showing RMSE value vs Epochs]
- [Graph 2: Performance evaluation plot showing RMSE value vs Epochs]
Intelligent Battery Health Monitoring

• Results

➢ Accuracy prediction comparison for battery no. 28 and 18

<table>
<thead>
<tr>
<th>Battery No</th>
<th>Performance measure</th>
<th>SVM*</th>
<th>RVM*</th>
<th>ANFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>RMSE</td>
<td>0.47</td>
<td>5.96*10-5</td>
<td>0.069</td>
</tr>
<tr>
<td>18</td>
<td>RMSE</td>
<td>1.43</td>
<td>0.54</td>
<td>4.93 *10-33</td>
</tr>
</tbody>
</table>

* A. Widodo et al. Intelligent prognostics for battery health monitoring based on sample entropy. 2011 (expert system with applications).
Intelligent Battery Health Monitoring

• Results

Accuray prediction comparison for battery no. 28 and 18

<table>
<thead>
<tr>
<th>Battery No</th>
<th>Performance measure</th>
<th>SVM*</th>
<th>RVM*</th>
<th>ANFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Accuracy</td>
<td>>95%</td>
<td>95%</td>
<td>96%</td>
</tr>
<tr>
<td>18</td>
<td>Accuracy</td>
<td>>95%</td>
<td>>95%</td>
<td>100%</td>
</tr>
</tbody>
</table>

* A.Widodo et al. Intelligent prognostics for battery health monitoring based on sample entropy. 2011 (expert system with applications).
Intelligent Battery Health Monitoring

• Conclusion

➤ MSE provides rich source of feature from the raw battery data, which has the relation with SOH of battery.

➤ Proposed system is applied successfully to use this relation to automatically predict the life of the battery.

➤ This system based on the MSE and ANFC method is plausible and can be used for Li-ion remaining battery life prediction.