MATLAB EXPO 2017
KOREA
4월 27일, 서울
등록 하기 matlabexpo.co.kr
Better than Hand – Generating Highly Optimized Code using Simulink and Embedded Coder

김종헌 부장
Senior Application Engineer
MathWorks Korea
Key Takeaways

1. Reduce costs by optimizing hardware resources
2. Create innovative products that maximize algorithm content
3. Expand benefits of code generation to more applications

“The advantages of Model-Based Design over hand-coding in C can’t be overestimated.” Kazuhiro Ichikawa, Ono Sokki

Ono Sokki Reduces Development Time for Precision Automotive Speed Measurement Device
Key Takeaways

1. Reduce costs by optimizing hardware resources
2. Create innovative products that maximize algorithm content
3. Expand benefits of code generation to more applications

“Embedded Coder generates optimized code that is as good as we can write, and we’ve never had any problems with defects in the generated code.”
Dr. Robert Turner, ABB
Challenges

- Difficult to embed sophisticated, state-of-the-art algorithms into low-cost production hardware
 - Limited ROM, RAM, stack, and clock speed
- Not always known a priori during design, what embedded device or resource is required
 - Need to experiment to find optimal implementation
- Hand coding is process bottleneck
 - Introduces bugs, adds delays, reduces design iterations
Solutions

Optimization Techniques:
1. Use optimal settings
2. Minimize data sizes
3. Target vector engines
4. Select best processor(s)
5. Reduce data copies
6. Reuse components
7. Thrift logic
1. Use Optimal Settings

Features: Embedded Coder Quick Start

Select your most important code generation objective.

- Execution efficiency
- RAM efficiency

What to consider

Based on your selection, the Quick Start tool configures your model with the best optimizations for your specified code generation objective.

After Quick Start code generation is complete, you can fine-tune your optimization settings using the Code Generation Advisor.
2. Optimize Data Types

Features: Single Precision Converter
3. Target vector engines

Features: Code Replacements
PIL Benchmark Results for ARM Cortex-A

Embedded Coder ANSI-C

Execution Time (μsecs)

ANSI, No Opt 410.7
ANSI, Opt 185.5
NE10, No Opt 16.8
NE10, Opt 14.1

Run Format: [ANSI or Ne10], [gcc no opt or gcc -02], ARM 1Ghz Cortex A8

Example: FIR Filter
4. Select best processor(s) for your application

- Portable code: any device for **algorithm code generation**

- Support packages for **target-specific** system executable generation
 - ARM … Zynq

- Hardware vendors offer their **own target packages**
 - ADI, Infineon, Microchip, NXP, Renesas, STMicro, TI, …
Results for PMSM Motor Control for ARM cores
- Average and Max Execution Time
5. Reuse data

void Subsystem(void)
{
 ...
 for (i = 0; i < 100; i++) {
 Reuse[i] = 2.0F * Reuse[i] * 20.0F;
 }
 fcn3(&Reuse[0]);
}
6. Reuse components

Features: Subsystem Reuse and Simulink Functions
7. Thrift Logic (Clone)

Features: Simulink Clone Detection
7. Thrift Logic (Prove)

Features: Polyspace Code Prover
Solution Summary

Optimization Techniques:
1. Use optimal settings
2. Minimize data sizes
3. Target vector engines
4. Select best processor(s)
5. Reduce data copies
6. Reuse components
7. Thrift logic

“Embedded Coder generates optimized code that is as good as we can write, and we’ve never had any problems with defects in the generated code.”
Dr. Robert Turner, ABB

ABB Accelerates the Delivery of Large-Scale, Grid-Connected Inverter Products with Model-Based Design
Key Takeaways

Simulink and Embedded Coder new features let you:

1. Reduce costs by optimizing hardware resources
2. Create innovative products that maximize algorithm content
3. Expand benefits of code generation to more applications

“When we generated code from our Simulink models with Embedded Coder, the team we handed it off to knew it was gold”

Maria Radecki, BAE Systems

BAE Systems Delivers **DO-178B Level A Flight Software on Schedule with Model-Based Design**
Additional Customer References and Applications

Honeywell Aerospace, USA
Certified Flight Control Processor

FLIR Systems, USA and Sweden
Thermal Imaging FPGA

Festo AG, Germany
Robotic PLC

GM, USA
Powertrain ECU

Alstom Grid, UK
HDVC Power DSP

Baker Hughes, Germany
Oil and Gas Drill Processor

www.mathworks.com/company/user_stories/