Automated Driving System Toolbox 소개

이제훈 차장
Common Questions from Automated Driving Engineers

How can I visualize sensor data?

How can I design and verify perception algorithms?

How can I design and verify sensor fusion?
Common Questions from Automated Driving Engineers

- How can I visualize sensor data?
- How can I design and verify perception algorithms?
- How can I design and verify sensor fusion?
Automated Driving **Sensor data**

- Camera
- Radar
- Lidar
- IMU
- Object Detection
- Sensor fusion & Tracking

IMU: Inertial Measurement Unit
Automated Driving Sensor data

Camera (640 x 480 x 3)

Vision Detector

SensorID = 1;
Timestamp = 1461634696379742;
NumDetections = 6;
Detection(1)
 TrackID: 0
 Classification: 5
 Position: [22.61 0.43 2.24]
 Velocity: [-9.86 0 0]
 Size: [0 1.75 0]
Detection(2)
 TrackID: 1
 Classification: 5
 Position: [22.8 3.12 2.24]
 Velocity: [-9.37 0 0]
 Size: [0 1.8 0]

Lane Detector

Left
 IsValid: 1
 Confidence: 3
 BoundaryType: 3
 Offset: 1.68
 HeadingAngle: 0.002
 Curvature: 0.000
Right
 IsValid: 1
 Confidence: 3

Inertial Measurement Unit

Timestamp: 1461634696379742
Velocity: 9.2795
YawRate: 0.0040

Radar Detector

SensorID = 2;
Timestamp = 1461634696407521;
NumDetections = 23;
Detection(1)
 TrackID: 0
 TrackStatus: 6
 Position: [56.07 17.73 0.34]
 Velocity: [-8.50 2.86 0]
 Amplitude: 3
Detection(2)
 TrackID: 1
 TrackStatus: 6
 Position: [35.35 19.59 0.34]
 Velocity: [-8.02 4.92 0]
 Amplitude: 3
Detection(3)
 TrackID: 12
 TrackStatus: 5
 Position: [57.69 3.13 0.34]

Lidar (47197 x 3)

Velocity: 12.2911 1.4790 -0.5900
Positon: -14.8852 1.7755 -0.6475
Velocity: -18.8020 2.2231 -0.7403
Amplitude: -25.7033 3.0119 -0.9246
Detection: -0.0632 0.0815 1.2501
Detection: -0.0978 0.0855 1.2561
Detection: -0.2814 0.1064 1.2575
Detection: -0.3375 0.1129 1.2650
Detection: -0.4611 0.1270 1.2572
Detection: -0.6184 0.1450 1.2475
Detection: -0.8369 0.1699 1.2319
Visualize sensor data
Visualize **Sensor data** in vehicle coordinates

- ISO 8855 vehicle axis coordinate system
 - Positive x is forward
 - Positive y is left

```matlab
%% Plot in vehicle coordinates
ax2 = axes(...
    'Position',[0.6 0.12 0.4 0.85]);
be = birdsEyePlot(...
    'Parent',ax2,...
    'Xlimits',[0 45],...
    'Ylimits',[-10 10]);
legend('off');
```
Visualize **Sensor data** - expected coverage area

```matlab
%% Create coverage area plotter
covPlot = coverageAreaPlotter(bep,...
    'FaceColor','blue',...  
    'EdgeColor','blue');

%% Update coverage area plotter
plotCoverageArea(covPlot,...
    [sensorParams(1).X ...  % Position x
     sensorParams(1).Y],...  % Position y
    sensorParams(1).Range,...
    sensorParams(1).YawAngle,...
    sensorParams(1).FoV(1)) % Field of view
```

Plot sensor coverage area with `coverageAreaPlotter`
Visualize **Sensor data** - detected objects (vehicle coordinates)

```matlab
%% Create detection plotter
detPlot = detectionPlotter(bep, ...
    'MarkerEdgeColor','blue',... 
    'Marker','^');

%% Update detection plotter
n = round(currentTime/0.05);
numDets = vision(n).numObjects;
pos = zeros(numDets,3);
vel = zeros(numDets,3);
labels = repmat({''},numDets,1);
for k = 1:numDets
    pos(k,:) = vision(n).object(k).position;
    vel(k,:) = vision(n).object(k).velocity;
    labels{k} = num2str(...
        vision(n).object(k).classification);
end
plotDetection(detPlot,pos,vel,labels);
```

Plot vision detections with `detectionPlotter`

`detectionPlotter` can be used to visualize **vision detector**, **radar detector**, and **lidar point cloud**.
%% Bounding box positions in image coordinates
imBoxes = zeros(numDets,4);
for k = 1:numDets
 if vision(n).object(k).classification == 5
 vehPosLR = vision(n).object(k).position(1:2)';
 imPosLR = vehicleToImage(sensor, vehPosLR);
 boxHeight = 1.4 * 1333 / vehPosLR(1);
 boxWidth = 1.8 * 1333 / vehPosLR(1);
 imBoxes(k,:)=[imPosLR(1) - boxWidth/2, ...
 imPosLR(2) - boxHeight, ...
 boxWidth, boxHeight];
 end
end

%% Draw bounding boxes on image frame
frame = insertObjectAnnotation(frame, ...
 'Rectangle', imBoxes, labels,...
 'Color','yellow','LineWidth',2);
im.CData = frame;
Learn more about visualizing vehicle data by exploring examples in the Automated Driving System Toolbox R2017a

- Plot object detectors in vehicle coordinates
 - Vision & radar detector
 - Lane detectors
 - Detector coverage areas

- Transform between vehicle and image coordinates

- Plot lidar point cloud
Common Questions from Automated Driving Engineers

How can I Visualize Sensor data?

How can I design and verify Perception algorithms?

How can I design and verify Sensor fusion?
Automated Driving **Perception Algorithms**

Object Detection:
Locate and classify object in image

- **Pedestrian Detection**
- **Vehicle Detection**
MATLAB Tools to **Train** Detectors

```plaintext
imageDS = imageDatastore(dir)
Easily manage large sets of images
- Single line of code to access images
- Operates on disk, database, big-data file system
```
MATLAB Tools to **Train** Detectors

Images ➔ **Label Ground Truth** ➔ **Ground Truth** ➔ **Train detector** ➔ **Object detector**

Label ground truth

Automate Labeling of Ground Truth
MATLAB Tools to **Train** Detectors

![Diagram showing the process of training detectors]

Design object detectors with the Computer Vision System Toolbox

<table>
<thead>
<tr>
<th>Machine Learning</th>
<th>Aggregate Channel Feature</th>
<th>trainACFObjectDetector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cascade</td>
<td>trainCascadeObjectDetector</td>
</tr>
<tr>
<td>Deep Learning</td>
<td>R-CNN (Regions with Convolutional Neural Networks)</td>
<td>trainRCNNObjectDetector</td>
</tr>
<tr>
<td></td>
<td>Fast R-CNN</td>
<td>trainFastRCNNObjectDetector</td>
</tr>
<tr>
<td></td>
<td>Faster R-CNN</td>
<td>trainFasterRCNNObjectDetector</td>
</tr>
</tbody>
</table>
Designing **Perception Algorithms**

Computer Vision Algorithms for Automated Driving

Vehicle Detection
Deep learning and ACF based (pre-trained)

Pedestrian Detection
ACF and HOG/SVM based (pre-trained)
Designing **Perception Algorithms**

Additional Computer Vision Algorithms for Automated Driving

Vehicle detection with distance estimation using mono-camera

Lane Detection and Classification

RANSAC-based lane boundary fitting

Lane boundary visualization
Designing **Perception Algorithms**

LiDAR Processing Algorithms
Example of Vision System Detection

How can I verify this detection is correct?
Ground truth labeling to **Train** Detectors

- Images → Label Ground Truth → Ground Truth → Train detector → Object detector

Ground truth labeling to **Evaluate** Detectors

- Images → Label Ground Truth → Ground Truth → Evaluate detections → Detections
Evaluate detections against ground truth
Learn more about verifying perception algorithms by exploring examples in the Automated Driving System Toolbox R2017a.

- **Train a Deep Learning Vehicle Detector**
 - Train object detector using deep learning and machine learning techniques

- **Define Ground Truth Data for Video or Image Sequences**
 - Label detections with Ground Truth Labeler App

- **Connect Lidar Display to Ground Truth Labeler**
 - Extend connectivity of Ground Truth Labeler App
Common Questions from Automated Driving Engineers

- How can I visualize sensor data?
- How can I design and verify perception algorithms?
- How can I design and verify sensor fusion?
Automated Driving **Sensor fusion** with radar and vision

Can we fuse detections to better track the vehicle?
Design multi-object tracker
Sensor fusion framework

- Assigns detections to tracks
- Creates new tracks
- Updates existing tracks
- Removes old tracks

Sensor fusion Framework

- Predicts and updates state of track
- Supports linear, extended, and unscented Kalman filters

Object Detections

Track Manager

Tracking Filter

Tracks

Time
Measurement
Measurement Noise

Time
State
State Covariance
Track ID
Age
Is Confirmed
Is Coasted
Sensor fusion - Data Association

![Diagram showing radar and vision objects with cost matrix, assignments, and fusion rules.]

Pair of visions and associated radars

<table>
<thead>
<tr>
<th>Vision</th>
<th>Radar</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>R_1</td>
</tr>
<tr>
<td>V_2</td>
<td>R_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>V_n</td>
<td>R_m</td>
</tr>
</tbody>
</table>

Assignments

- $V_1 + R_2$
- $V_2 + R_1$
- ...
- $V_n + R_m$

Fusion

- $f(V_1) + f(R_2)$
- $f(V_2) + f(R_1)$
- ...
- $f(V_n) + f(R_m)$

Fused Object List

```python
[assignments, unassignedVisions, unassignedRadars] = ...
assignDetectionsToTracks(costMatrix, param.costOfNonAssignment);
```
Sensor fusion - Kalman Filter

Initial state & covariance

\[
\begin{align*}
\hat{x}_0 & \quad P_0 \\
\hat{x}_{k-1} & \quad P_{k-1}
\end{align*}
\]

Previous state & covariance

\[
\begin{align*}
\rightarrow_{k \rightarrow k-1} \quad \text{Current becomes previous}
\end{align*}
\]

Time Update (“Predict”)

1. Predict state based on physical model and previous state
 \[
 \hat{x}_k^- = A \hat{x}_{k-1} + Bu_k + w_k
 \]
2. Predict error covariance matrix
 \[
 P_k^- = AP_{k-1}A^T + Q
 \]

Measurement Update (“Correct”)

1. Compute Kalman gain
 \[
 K_k = P_k^- H^T (HP_k^- H^T + R)^{-1}
 \]
2. Update estimate state with measurement
 \[
 \hat{x}_k = \hat{x}_k^- + K_k (z_k - H\hat{x}_k^-)
 \]
3. Update the error covariance matrix
 \[
 P_k = (I - K_k H) P_k^-
 \]

\[
\begin{align*}
\hat{x}_k & \quad P_k
\end{align*}
\]

- **u**: Control variable matrix
- **w**: Process (state) noise
- **P_k^-**: Process (state) covariance matrix (estimation error)
- **e_k^-**: Covariance matrix
- **Q**: Process noise covariance matrix
- **A**: State matrix relates the state at the previous, \(k-1 \) to the state at the current, \(k \)
- **K_k**: Kalman gain
- **v**: Measurement noise
- **R**: Sensor noise covariance matrix (measurement error)
- **H**: Output matrix relates the state to the measurement

From sensor spec or experiment
Sensor fusion - Kalman Filter

Time Update (“Predict”)

\[
\begin{align*}
[z_{\text{pred}}, x_{\text{pred}}, P_{\text{pred}}] &= \text{predict}(\text{obj}) \\
z_{\text{pred}} &: \text{prediction of measurement} \\
x_{\text{pred}} &: \text{prediction of state} \\
P_{\text{pred}} &: \text{state estimation error covariance at the next time step}
\end{align*}
\]

Measurement Update (“Correct”)

\[
\begin{align*}
[z_{\text{corr}}, x_{\text{corr}}, P_{\text{corr}}] &= \text{correct}(\text{obj}, z) \\
z_{\text{corr}} &: \text{correction of measurement} \\
x_{\text{corr}} &: \text{correction of state} \\
P_{\text{corr}} &: \text{state estimation error covariance}
\end{align*}
\]

Output of updated state

\[
\begin{align*}
\hat{x}_{k} &= \text{Corrected prediction of state} \\
\hat{P}_{k} &= \text{Corrected prediction of error covariance}
\end{align*}
\]

Options for Linear, Extended, and Unscented Kalman Filters

<table>
<thead>
<tr>
<th>Constant velocity</th>
<th>Linear KF (trackingKF)</th>
<th>Extended KF (trackingEKF)</th>
<th>Unscented KF (trackingUKF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>initcvkf</td>
<td>initcvekf</td>
<td>initcvukf</td>
<td></td>
</tr>
<tr>
<td>Constant acceleration</td>
<td>initcakf</td>
<td>initcaekf</td>
<td>initcaukf</td>
</tr>
<tr>
<td>Constant turn</td>
<td>Not applicable</td>
<td>initctekf</td>
<td>initctukf</td>
</tr>
</tbody>
</table>
Synthesize Driving Scenario for **Sensor fusion**

- Simulated data for worst-case scenarios
- OEM specific test scenarios
- Fail Operation test scenarios
- Scenarios identified from real world test drive data
%% Create a new scenario
s = drivingScenario('SampleTime', 0.05);

%% Create road
road(s, [0 0; ... % Centers [x,y] (m)
 45 0],...
 5); % Width (m)
road(s, [35 20; ...
 35-10],...
 5);

%% Plot scenario
p1 = uipanel('Position',[0.5 0 0.5 1]);
a1 = axes('Parent',p1);
plot(s,'Parent',a1,...
 'Centerline','on','Waypoints','on')
a1.XLim = [0 45];
a1.YLim = [-6 20];

Specify road centers and width as part of a drivingScenario
Synthesize Driving Scenario for **Sensor fusion**

%% Add ego vehicle
egoCar = vehicle(s);
waypoints = [2 -1.25; ... % [x y] (m)
 28 -1.25; ...
 30 -1.25; ...
 36.25 4; ...
 36.25 6; ...
 36.25 14];
speed = 13.89; % (m/s) = 50 km/hr
path(egoCar, waypoints, speed);

%% Play scenario
while advance(s)
 pause(s.SampleTime);
end

Specify ego **vehicle** path using waypoints and speeds
%% Add child pedestrian actor
child = actor(s,'Length',0.24,...
 'Width',0.45,...
 'Height',1.7,...
 'Position',[40 -5 0],...
 'Yaw',180);

path(child,...
 [30 15; 40 15],... % Waypoints (m)
 1.39); % Speed (m/s) = 5 km/hr

%% Add Target vehicle
targetVehicle = vehicle(s);
path(targetVehicle,...
 [44 1; -4 1],... % Waypoints (m)
 [5 ; 14]); % Speeds (m/s)
Synthesize Driving Scenario for **Sensor fusion**

```matlab
radarSensor =

radarDetectionGenerator with properties:

- **SensorIndex**: 1
- **UpdateInterval**: 0.1000
- **SensorLocation**: [3.4000, 0]
  - **Height**: 0.2000
  - **Yaw**: 0
  - **Pitch**: 0
  - **Roll**: 0
- **FieldOfView**: [20 5]
  - **MaxRange**: 150
  - **RangeRateLimits**: [-100 100]
- **DetectionProbability**: 0.9000
- **FalseAlarmRate**: 1.0000e-06

Show all properties
```

```matlab
visionSensor =

visionDetectionGenerator with properties:

- **SensorIndex**: 1
- **UpdateInterval**: 0.1000
- **SensorLocation**: [1.9000, 0]
  - **Height**: 1.1000
  - **Yaw**: 0
  - **Pitch**: 1
  - **Roll**: 0
- **Intrinsics**: [1x1 cameraIntrinsics]
- **FieldOfView**: [43.6028, 33.3985]
  - **MaxRange**: 150
  - **MaxSpeed**: 50
  - **MaxAllowedOcclusion**: 0.5000
  - **MinObjectImageSize**: [15 15]
- **DetectionProbability**: 0.9000
- **FalsePositivesPerImage**: 0.1000

Show all properties
```
Euro NCAP TEST PROTOCOL – AEB VRU systems

Car-to-VRU Nearside Child (CVNC)
- Vehicle travels towards a VRU
- VRU: A child pedestrian crossing the road
- Scenario: Pedestrian’s path running from behind and obstruction vehicle strikes the pedestrian at 50% of the vehicle’s width when no braking action is applied.

```
% Create a new scenario
s = drivingScenario;
s.SampleTime = 0.05;

% Create road
RoadCenters = [0 0; 50 0];
road(s, RoadCenters, 10);

% Add actors
% --- moving ego vehicle towards a child pedestrian crossing
egoCar = vehicle(s, 'Position', [0.4 -1 0], 'Yaw', 180);
Waypoints = [0.4 -1; 36 -1]; % in meters
Speed = 13.89; % egoCar speed = 13.89 m/s = 50 km/hr
path(egoCar, Waypoints, Speed); % create egoCar path

% --- two stationary cars
vehicle(s, 'Position', [35.3 -3.8 0]);
vehicle(s, 'Position', [29.6 -3.8 0]);

% --- child pedestrian crossing it's path running from behind of stationary cars
child = actor(s, 'Length', 0.24, 'Width', 0.45, 'Height', 1.7,...
'Position', [40 -5 0], 'Yaw', 190);
Waypoints = [40 -5; 40 10]; % in meters
Speed = 1.39; % child speed = 1.39 m/s = 5 km/hr
path(child, Waypoints, Speed); % create child path
```
Learn more about sensor fusion by exploring examples in the Automated Driving System Toolbox R2017a

- **Design**
 - multi-object tracker based on logged vehicle data

- **Generate C/C++**
 - code from algorithm which includes a multi-object tracker

- **Synthesize driving scenario**
 - to test multi-object tracker
Common Questions from Automated Driving Engineers

How can I Visualize Sensor data?

How can I design and verify Perception algorithms?

How can I design and verify Sensor fusion?
Thank you