MATLAB EXPO 2017
Motor Controls Implementation on Systems-On-Chip

Jorik Caljouw
Key Takeaways

- Meet stringent requirements and reduce costs
- Reduce hardware testing time up to 5x
- Manage design complexity and improve team collaboration
Punch Powertrain develops complex SoC-based motor control

- Powertrains for hybrid and electric vehicles
- Hardware choice through simulations
- Traditional microcontroller too slow
- No experience designing FPGAs!

✓ Designed integrated E-drive: Motor, power electronics and software
✓ 4 different control strategies implemented
✓ Done in 1.5 years with 2FTE’s
✓ Models reusable for production
✓ Smooth integration and validation due to development process
Key trend: Increasing demands from motor drives
Systems-on-Chip for motor control
Key Trend: SoCs are now used in 36% of new FPGA projects

Challenges in using SoCs for Motor and Power Control
Why use Model-Based Design to develop motor control applications on SoCs?
ZedBoard

Zynq SoC (XC7Z020)

Load motor

Mechanical coupler

FMC module: control board + low-voltage board

Motor under test (with encoder)
Conceptual workflow targeting SoCs

System Simulation Test Bench

- Algorithm C Model
- Algorithm HDL Model
- Model of Motor & Dyno
- Linux / VxWorks Reference Framework
- Algorithm C Code
- Algorithm HDL Code
- Programmable Logic Reference Framework
- SoC Hard Processor
- SoC Programmable Logic
- Motor & Dyno Hardware

Embedded software engineer
Algorithm developer
Hardware designer

MATLAB EXPO 2017
Hardware/software partitioning

Target to ARM

Target to Programmable Logic
3T Develops Robot Emergency Braking System with Model-Based Design

Challenge
Design and implement a robot emergency braking system with minimal hardware testing

Solution
Model-Based Design with Simulink and HDL Coder to model, verify, and implement the controller

Results
- Cleanroom time reduced from weeks to days
- Late requirement changes rapidly implemented
- Complex bug resolved in one day

“With Simulink and HDL Coder we eliminated programming errors and automated delay balancing, pipelining, and other tedious and error-prone tasks. As a result, we were able to easily and quickly implement change requests from our customer and reduce time-to-market.”

Ronald van der Meer
3T
Key Takeaways

Meet stringent requirements and reduce costs

Reduce hardware testing time up to 5x

Manage design complexity and improve team collaboration
Learn More

- Get an in-depth demo in the Technology Showcase
 - New: see award-winning Native Floating Point in HDL Coder!

- Videos
 - HDL Coder: Native Floating Point

- Webinars
 - Prototyping SoC-based Motor Controllers on Intel SoCs with MATLAB and Simulink
 - How to Build Custom Motor Controllers for Zynq SoCs with MATLAB and Simulink

- Articles
 - How Modeling Helps Embedded Engineers Develop Applications for SoCs (MATLAB Digest)
 - MATLAB and Simulink Aid HW-SW Codesign of Zynq SoCs (Xcell Software Journal)

- Tutorials:
 - Define and Register Custom Board and Reference Design for SoC Workflow
 - Field-Oriented Control of a Permanent Magnet Synchronous Machine on SoCs

MATLAB EXPO 2017
How to get started?

- Embedded Systems
- FPGA Design
- Xilinx Zynq SoCs
Data Analytics
- Data Processing and Visualization
- Statistics
- Machine Learning
- Optimization Techniques
- Parallel Computing

Application-Specific
- Control System Design
- Signal Processing
- Communication Systems
- LTE Systems

Model-Based Design
- Implementing MBD Workflow
- Model Management and Architecture
- Verification and Validation

Code Generation
- Rapid Prototyping and HIL-Simulation
- Embedded Systems
- FPGA Design
- Generating HDL Code
- Xilinx Zynq SoCs
- AUTOSAR

Application Development
- Programming Techniques
- Building Interactive Applications
- Object-Oriented Programming

Computational Finance
- Risk Management
- Time-Series Modelling

Stateflow®
- Event-Based Modeling

Signal Processing
- Using MATLAB
- Using Simulink

Simscape™
- General Simscape™
- Simscape Multibody™
- Simscape Driveline™
- Simscape Fluids™
- Simscape Power Systems™

Image and Video Processing
- Image Processing
- Computer Vision

https://nl.mathworks.com/services/training.html