MATLAB EXPO 2017
Team-Based Collaboration in Simulink

Sonia Bridge
Create **tools** that make it **easy** for teams to manage the full lifecycle of their **Model-Based Design** projects.
Common Challenges

How to:
- Create a more efficient team-based environment?
- Effectively componentize system designs including data?
- Track design changes?
- Use source control functionality within Simulink?
- Associate project-level information with files?
- Utilise automation to maximise efficiency in enforcing best practices?
- Share work within the group and outside the group?
- Transfer knowledge across projects?
Simulink Project

Foundation technology supporting efficient Model-Based Design in teams

- Enables sharing of work
- Ensures a project is complete (files, data)
- Ensures consistent environment across a team (MATLAB path, data, slprj location, …)
- Supports different entry points and sharing best practices via shortcuts
- Enables associating project-level information with files via labels
- Part of Simulink (first shipped in R2011b)

Supports advanced users

- Impact analysis: what is the impact of a change?
- Rich APIs to script and customize

MATLAB EXPO 2017
Getting started with an existing project
Simulink project “mistake-proofs” your team environment

No more MATLAB code required to manage

- MATLAB Path via UI
- Locations for generated files (“slprj”)

“I’m going to try my project on the new Linux cluster”
Simulink Projects Shortcuts

- Make it easy for *any* engineer (not just the engineer who created the project) to:
 - Find important files
 - Find and execute important or common operations
 - Make the top-level model in the project a shortcut
 - All debuggable
- Optionally set tasks to run at project start-up or shutdown
 - Provides formal mechanism for running initialization scripts
 - Makes it easier to ensure the symmetric shutdown scripts are called
Task Automation – Configuring Project Environment

- Robustly configure the team environment
- For everyone
- Automatically
Using Simulink Projects to Create a Consistent Cross-Team Environment

- Benefits:
 - Everyone on the team has the same environment
 - New team members can get started more quickly
 - Less wasted time debugging discrepancies
Integration with Source Control
How do people share and manage projects?

At an SAE webinar on “Model-Based Engineering”, question asked:

Q: “How do you manage the files and data within your projects?”

1. Named folders (“project_v1”, “project_v2”, etc.)
2. Source Control tool
3. Application Lifecycle Management (ALM) tool
How do people share and manage projects?

Majority use COTS tools for managing work & sharing information

- Source control
- Application Lifecycle Management (ALM)

Surprise was the number just using the file system

- Doesn’t scale well
- Doesn't support team work
- So why were they doing it?

<table>
<thead>
<tr>
<th>Source Control</th>
<th>ALM</th>
<th>Named Folders</th>
</tr>
</thead>
<tbody>
<tr>
<td>15%</td>
<td>32%</td>
<td>53%</td>
</tr>
</tbody>
</table>
Source Control Integrations

Microsoft Team Foundation Server (TFS) integration available now from MathWorks File Exchange
Compare and Merge Simulink Models

Simplified comparison and merge workflow for Simulink models

- Comparison and merge available with Simulink
- Easily select changes to merge into new target model file
- Highlight changes in the Simulink editor
- Launch comparison from the MATLAB desktop, current folder browser, command line, or source control
- Create reports for archiving and review

» slxml_sfcar
Integrating Work from Different Engineers via Merge

- Supports concurrent engineering
- Lets you concentrate on design
Componentization
Complex Design Development through Componentization

- Supporting team-based workflows
 - Faster modular development
 - More effective verification
 - Increased reusability

MATLAB EXPO 2017
Simulink Architectural Components

- **Virtual subsystem**
 - Graphical component – The contents are flattened to the level of the parent system during execution.

- **Atomic subsystem**
 - Simulink executes all blocks as a unit before executing the next block
 - Context dependent so inherits properties such as dimensions and data types from the parent model

- **Model block**
 - Executed as a unit
 - Context independent so doesn’t inherit properties from parent model
Component selection strategy

- Virtual and Atomic Subsystems
 - When scalability is not an issue
 - When the atomic subsystem boundary is acceptable
 - During early development of the system

- Model Reference
 - When scalability is needed
 - When hard interfaces are critical
 - To enable concurrent teamwork and unit testing

- Library Components
 - Reused utility functions
Component-Based Modelling

- Criteria for componentization:
 - Base the component boundaries on those of the real system
 - Define components distinctly so that only one engineer at a time needs to edit a component.
 - Subdivide components that are too big and those that could become too big as the design is elaborated.

- Recognize that there is no silver bullet
 - Experience is key here as well

- Start discussing this early in your project
 - What should be the criteria for componentization?
 - Who owns which component?
Partitioning Design Data

Executable Specification = Algorithm + Data
Why Simulink Data Dictionary?

Base Workspace Limitations
- Mixed with MATLAB data
- Lack of organization
- Lack of change detection
 - What changed?
 - How did it change?
 - Can’t revert changes
- Where did it come from?
- Lack of data persistence
- Conflict resolution issues

Simulink Data Dictionary
- Separate
- Partitioning
- Change detection
 - Shows changed items
 - Differencing
 - Revert
- Traceability
- Data persistence
- Conflict resolution
- This subsystem has same name as parent model
- Probably not the best name
- What is it..?
Demo

- Refactor into a new Model Reference
- Advisor helps automate/mistake proof the process
- Dependency analysis helps ensure we do not “lose” this new component
- Refactoring support for renaming
- Find dependencies to help work out why there are some other components with poorly chosen names (like “lift_intertia”)
Simulink Project: Automatic Renaming

Automatically update files impacted by renaming, removing and deleting project files.

- Update model references and library links when renaming Simulink models.
- Update MATLAB code and model/block callbacks when renaming m/mlx files.
- Warn when deleting a file that is used by other files in the project.
- Update the MATLAB path when adding models or code files to the project.

```plaintext
slexPowerWindowStart
```
Rename, remove or delete a file from the project.
Dependency Analysis – Modular Development

List products required

Show model structure

Highlight issues
Highlight Missing Products Required by a Project

Find the products needed to use a project

- Dependency analysis reports the products required by a project
- Products that are not installed shown as “(Missing)”.
- Files that use missing products show a warning icon. Click the file to see the missing products in the side panel.
- Open the model to get links to download missing products
Using labels to share and store information
Using Labels to Add Information to the Project

- Done lots of work to understand what the different parts are
- Wouldn’t it be nice to record that so others do not have to repeat this?
- What are labels?
- Apply some labels to the project
Simulink Project Labels

Easily add, modify and view labels attached to a file.

- Easily see and edit label data for all labels attached to a file.
- Use drag and drop to add labels.
- Easily switch between single-valued labels.
Note on Metadata

- What do we mean by metadata?
 - Wikipedia: “Data about data”
 - MathWorks: “Data about files”

- Data that is about the file, not (necessarily) part of it. For example:
 - FuelType = Gas, Diesel
 - ReleaseStatus = Research, Prototype, Production, Sunset
 - SecurityClassification = Unclassified, Protected, Restricted, Confidential
 - FileClassification = Design, Derived, Artefact
 - TestedWith = R2010b, R2011a, R2011b, ...
 - Coverage Metric = 84%

- Metadata can change without the file it relates to *having* to change.
Labels + Dependency analysis = Impact Analysis

- “What is the impact of changing the supervisory control model?”
- “What tests do I need to run to verify those changes?”
- All accessible from command-line API for full automation
More options for automation
Why Automate?

- **Automated Processes Get Done**
 - Regularly (if needed)
 - Repeatable
 - Can be done by anyone

- **Corollaries**
 - Manual processes are often infrequently done
 - Can be subject to variation
 - Perhaps only one person can do them
How can Automation in Simulink Project help?

- Now anyone can rebuild the S-Functions
 - (or run the tests; generate code; publish the reports; import and validate test data; …)
 - Even at 8:34pm on a Friday night; on a testing trip; …

- Groups help provide structure
 - Group by type; or by job function (project manager group; testing group)
Automation Options in Simulink Projects

- Build-in “best practice” support
 - Project Checks
 - Growing list of our own “gotchas”
Run Custom Tasks and Create Reports

Open custom task control from the toolstrip

- Select custom functions and files more easily
- View sets of results side-by-side
- Generate reports from custom task results

- Note: Custom tasks were known as “batch jobs” in releases before R2017a

» sldemo_slproject_batchjobs

MATLAB EXPO 2017
Example Custom Task

- Very small amount of code required
- Common patterns
 - Is this a file of type X?
 - Does this file have a label from category X with value Y?
Simulink Project API

- Easily access information for the project
- Add, remove, inspect files and labels

If under source control,
- See source control information for files
- Get the list of modified files
More options for sharing
Most Common Challenge in Sharing Work

“It works on my computer, just not on yours…”

Common causes:

- Incomplete set of files
- Different environment
 - (software versions, MATLAB path, …)
- Wrong data loaded
- What do I do to get started?
Sharing work outside source control

Simulink Project has built in capabilities for sharing

- GitHub
 - Collaborative sharing
 - Expect to make changes together

- Archive file
 - Fast sharing of “what I am doing now”
 - “Delivery” workflows:
 - Send a package of work
 - Work independently
 - Receive a package of work back
How much to share?

- Typically do not want to share all my project with a supplier or customer
- Reduce to the minimum to
 - Avoid sharing IP I want to keep in-house
 - Keep it simple

- Create “Export Profiles” to manage which files are exported from project
 - Uses project labels to set up exclusion rules
 - Set up many profiles for different workflows
 - Sharing to supplier (share only what is needed)
 - Share to customer (shield my IP)
 - Share to HIL rig (no tests, doc, requirements)
 - Etc.
Knowledge transfer
Model Templates

Build models using design patterns that serve as starting points to solve common problems

- Use shipped templates to get started with building models or create custom templates to from a Simulink model
 - Avoid problem of corrupting original file when creating a new model
- Avoid repetitive tasks when starting out to build a new model
- Enforce a standard process for building models for the entire team or organization
Projects can reference other projects

Componentize large modelling projects

- Develop reusable components using projects
- Flexible referencing:
 - Relative
 - Absolute
- Extract folders to referenced projects
- Deep hierarchies are supported

» sldemo_slproject_airframe_references
Include References in Templates for Sharing and Reuse

Template with references

- Start from a project with references
- Create a template including the references
- Save it on the MATLAB path or double click it to see it in the start page
- Create a new project based on the template
Summary

▪ Common challenges addressed!
 – Structured/ Common Environment
 – Graphical Dependency Analysis
 – Source Control Integration
 – Automation of common tasks
 – Options for sharing work
 – Parallel development workflows
 – Knowledge retention

▪ Simulink Projects for efficient team collaboration workflows

▪ Try it Today!
Additional Resources

- Documentation
 - Project Management

- Example
 - Using a Simulink Project

- Tutorials
 - Try Simulink Project Tools with the Airframe Project
 - Create a New Project to Manage Existing Files

- Training
 - Simulink Model Management and Architecture

- Consulting
 - Proven Solutions from MathWorks Consulting Services
Support

Get Started

- Download Products
- Installation Help
- Tutorials

Get Help

- Documentation
- Examples
- Answers

Community

- File Exchange: Find and Share Code
- Blogs: Learn from Experts
- Cody: Play Coding Game
- ThingSpeak: Collect and Analyze IoT data

MATLAB EXPO 2017
Q & A