Agenda

1. Access and Explore Data
 - Files
 - Databases
 - Sensors

2. Preprocess Data
 - Working with Messy Data
 - Data Reduction/Transformation
 - Feature Extraction

3. Develop Predictive Models
 - Model Creation e.g. Machine Learning
 - Parameter Optimization
 - Model Validation

4. Integrate with Production Systems
 - Desktop Apps
 - Enterprise Scale Systems
 - Embedded Devices and Hardware
 - AWS Kinesis

5. Visualize Results
 - 3rd party dashboards
 - Web apps

MATLAB EXPO 2018
The Need for Large-Scale Streaming

Predictive Maintenance
- Increase Operational Efficiency
- Reduce Unplanned Downtime

Jet engine: ~800TB per day
Turbine: ~ 2 TB per day

More applications require near real-time analytics

Medical Devices
- Patient Safety
- Better Treatment Outcomes

Connected Cars
- Safety, Maintenance
- Advanced Driving Features

Car: ~25 GB per hour
Example Problem – How’s my driving?

- A group of MathWorks employees installed an OBD dongle in their car that monitors the on-board systems

- Data is streamed to the cloud where it is aggregated and stored

- We would like to use this data to score the driving habits of participants
Example: Fleet Analytics with MATLAB
Fleet Analytics Architecture

Edge Devices

Production System

Analytics Development

Business Decisions

- Kafka Connector
- MATLAB Production Server
- MATLAB Compiler SDK
- API Gateway
- AWS Lambda
- kafka
- Storage Layer
- Business Systems
- End Users

MATLAB EXPO 2018
The first step is to clean up the incoming data.
The Data: Timestamped messages with JSON encoding

```
{
  "vehicles_id": {"$oid":"55a3fd0069702d5b41000000"},
  "time": {"$date":"2015-07-13T18:01:35.000Z"},
  "kc" : 1975.0, "kff1225" : 100.65293, "kff125a" : 110.36619, ...
}
```

```
{
  "vehicles_id": {"$oid":"55a3fe3569702d5c5c000020"},
  "time": {"$date":"2015-07-13T18:01:53.000Z"},
  "kc" : 2000.0, "kff1225" : 109.65293, "kff125a" : 115.36619, ...
}
```

```
{
  "vehicles_id": {"$oid":"55a4193569702d115b000001"},
  "time": {"$date":"2015-07-12T19:04:04.000Z"},
  "kc" : 2200.0, "kff1225" : 112.65293, "kff125a" : 112.36619, ...
}
```
Access a Sample of Data

Raw Data

<table>
<thead>
<tr>
<th>timestamp</th>
<th>1 value</th>
<th>2 key</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-Jan-2015 22:12:23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-Jan-2015 22:12:24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-Jan-2015 22:12:25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-Jan-2015 22:12:26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Timetable

<table>
<thead>
<tr>
<th>trip_id</th>
<th>VIN</th>
<th>kft1001</th>
<th>kft1006</th>
<th>kft1220</th>
<th>kft1221</th>
<th>kft1222</th>
<th>kft1223</th>
<th>kft125a</th>
</tr>
</thead>
<tbody>
<tr>
<td>55a3fe356...</td>
<td>55a3fe356...</td>
<td>17.1000</td>
<td>-84.9323</td>
<td>45.4704</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>59.0434</td>
</tr>
<tr>
<td>55a3fe356...</td>
<td>55a3fe356...</td>
<td>17.1000</td>
<td>-84.9322</td>
<td>45.4704</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>57.8609</td>
</tr>
<tr>
<td>55a3fe356...</td>
<td>55a3fe356...</td>
<td>18.0000</td>
<td>-84.9322</td>
<td>45.4705</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>52.7147</td>
</tr>
<tr>
<td>55a3fe356...</td>
<td>55a3fe356...</td>
<td>18.0000</td>
<td>-84.9321</td>
<td>45.4706</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>51.1983</td>
</tr>
<tr>
<td>55a3fe356...</td>
<td>55a3fe356...</td>
<td>18.0000</td>
<td>-84.9321</td>
<td>45.4706</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>49.1095</td>
</tr>
<tr>
<td>55a3fe356...</td>
<td>55a3fe356...</td>
<td>56.7000</td>
<td>-84.9304</td>
<td>45.4685</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>73.2005</td>
</tr>
<tr>
<td>55a3fe356...</td>
<td>55a3fe356...</td>
<td>56.7000</td>
<td>-84.9304</td>
<td>45.4685</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>75.3812</td>
</tr>
<tr>
<td>55a3fe356...</td>
<td>55a3fe356...</td>
<td>57.6000</td>
<td>-84.9304</td>
<td>45.4683</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>70.7542</td>
</tr>
<tr>
<td>55a3fe356...</td>
<td>55a3fe356...</td>
<td>57.6000</td>
<td>-84.9304</td>
<td>45.4682</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>62.8340</td>
</tr>
</tbody>
</table>

- ✓ Decode JSON data
- ✓ Create Timetable
Develop a Preprocessing Function

Preprocess Data

Timetable

Preprocess data

t = sortrows(t);
t = rmmissing(t,'MinNumMissing',width(t)-2);

Perform windowed calculations

t.Speed = movmedian(t.SpeedGPS,3);
t.D1 = [0;diff(t.SpeedGPS)];

[tmin,tmax] = bounds(t.time);
tnew = tmin:seconds(10):tmax;
countsByTime = retime(t(:,{'Event'},tnew,histcounts);
Ad Hoc Access to Data from MATLAB

1. Access and Explore Data

Access the data in S3

Bring up the AthenaClient

```matlab
athenaClient = aws.athena.Client();
athenaClient.Database = 'trainingdata';
athenaClient.initialize();
```

Create a query and submit

```matlab
athenaClient.submitQuery('SELECT * FROM "trainingdata"."sampledata" limit 100','s3://fleetrainingdata')
```

Fetch data as a table for easy analysis

```matlab
ds = datastore('s3://fleetrainingdata/*.csv');
ds.NumHeaderLines = 2;
data = table(ds);
```

Your usual MATLAB workflow goes here

MATLAB EXPO 2018
Develop a Predictive Model

Production System

Analytics Development

Edge Devices

Business Decisions

MATLAB EXPO 2018
Everything you need to develop a predictive model is found in MATLAB

- Label Events
- Represent Signals
- Train Model
- Validate Model
- Scale Up

```
% Scale up
tt = tall(data); % test tall array
model = TreeBagger(50,tt,'Event');

% Scale to out of memory data
tt = tall(ds);
tt = preprocessData(tt);
model = TreeBagger(50,tt,'Event');
save machineLearningModel model
```

- Evaluating tall expression using the Spark Cluster
 - Pass 1 of 2: Completed in 11 sec
 - Pass 2 of 2: Completed in 2.3333 min
 Evaluation completed in 2.6167 min
Develop a Predictive Model in MATLAB
Integrate Analytics with Production Systems

Integrate with Production Systems

Production System

Analytics Development

Edge Devices

API Gateway

AWS Lambda

kafka

MATLAB Production Server

MATLAB Compiler

SDK

Algorithm Developers

Business Decisions

End Users

Business Systems

Power BI

Qlik

Tableau

MATLAB EXPO 2018
A quick Intro to Stream Processing

- **Batch Processing** applies computation to a finite sized historical data set that was acquired in the past.

- **Stream Processing** applies computation to an unbounded data set that is produced continuously.
Why stream processing?

Edge Processing with MATLAB Coder

MATLAB Distributed Computing Server, MATLAB Compiler

Stream Processing with MATLAB Production Server

Big Data processing on historical data

Kafka

Today’s example focuses here

Integrate with Production Systems

Value of data to decision making

Preventive / Predictive

Actionable

Reactive

Historical

Time

Real-Time

Seconds

Minutes

Hours

Days

Months

MATLAB EXPO 2018

17
Streaming data is treated as an unbounded Timetable

Input Table

<table>
<thead>
<tr>
<th>Event Time</th>
<th>Vehicle</th>
<th>RPM</th>
<th>Torque</th>
<th>Fuel Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>18:01:10</td>
<td>55a3fd</td>
<td>1975</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>18:10:30</td>
<td>55a3fe</td>
<td>2000</td>
<td>109</td>
<td>115</td>
</tr>
<tr>
<td>18:05:20</td>
<td>55a3fd</td>
<td>1980</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>18:10:45</td>
<td>55a3fd</td>
<td>2100</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>18:30:10</td>
<td>55a419</td>
<td>2000</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>18:35:20</td>
<td>55a419</td>
<td>1960</td>
<td>103</td>
<td>105</td>
</tr>
<tr>
<td>18:20:40</td>
<td>55a3fe</td>
<td>1970</td>
<td>112</td>
<td>104</td>
</tr>
<tr>
<td>18:39:30</td>
<td>55a419</td>
<td>2100</td>
<td>105</td>
<td>110</td>
</tr>
<tr>
<td>18:30:00</td>
<td>55a3fe</td>
<td>1980</td>
<td>110</td>
<td>113</td>
</tr>
<tr>
<td>18:30:50</td>
<td>55a3fe</td>
<td>2000</td>
<td>100</td>
<td>110</td>
</tr>
</tbody>
</table>

Output Table

<table>
<thead>
<tr>
<th>Time window</th>
<th>Vehicle</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>18:00:00</td>
<td>55a3fd</td>
<td>5</td>
</tr>
<tr>
<td>18:10:00</td>
<td>55a3fe</td>
<td>...</td>
</tr>
<tr>
<td>18:10:00</td>
<td>55a419</td>
<td>...</td>
</tr>
<tr>
<td>18:10:00</td>
<td>18:20:00</td>
<td>55a3fd</td>
</tr>
<tr>
<td>18:10:00</td>
<td>18:20:00</td>
<td>55a3fe</td>
</tr>
<tr>
<td>18:10:00</td>
<td>18:20:00</td>
<td>55a419</td>
</tr>
<tr>
<td>18:20:00</td>
<td>18:30:00</td>
<td>55a3fd</td>
</tr>
<tr>
<td>18:20:00</td>
<td>18:30:00</td>
<td>55a3fe</td>
</tr>
<tr>
<td>18:20:00</td>
<td>18:30:00</td>
<td>55a419</td>
</tr>
<tr>
<td>18:30:00</td>
<td>18:40:00</td>
<td>55a3fd</td>
</tr>
<tr>
<td>18:30:00</td>
<td>18:40:00</td>
<td>55a3fe</td>
</tr>
<tr>
<td>18:30:00</td>
<td>18:40:00</td>
<td>55a419</td>
</tr>
</tbody>
</table>

MATLAB Function

4 Integrate with Production Systems
Introducing MATLAB Production Server

Data

- Databases
 - DynamoDB
 - SQL Server
 - Cassandra
 - Cosmos DB

- Cloud Storage
 - Azure Blob

- Streaming
 - AWS Kinesis
 - Azure IoT Hub

Analytics

MATLAB Production Server

Request Broker

Business System

- Dashboards
 - Qlik Sense
 - Tableau
 - Microsoft Power BI
 - Spotfire

- Web
 - IIS
 - Apache Tomcat
 - WebSphere

- Custom Apps
 - OSIsoft PI System
 - kafka
 - MQTT

Platform

Google Cloud Platform

Azure

Amazon Web Services

Rackspace

OpenStack

VMware

MATLAB EXPO 2018
MATLAB Production Server is an application server that publishes MATLAB code as APIs
Connecting MATLAB Production Server to Kafka

- Kafka client for MATLAB Production Server feeds topics to functions deployed on the server

- Configurable batch of messages passed as a MATLAB Timetable

- Each consumer process feeds one topic to a specified function

- Drive everything from a simple config file
 - No programming outside of MATLAB!

MATLAB EXPO 2018
Develop and Deploy a Stream Processing Function

Integrate with Production Systems

Edge Devices

- API Gateway
- AWS Lambda

Production System

- Kafka Connector
- MATLAB Production Server
- MATLAB Compiler SDK

Analytics Development

- Algorithm Developers

Business Decisions

- Power BI
- Qlik
- Tableau

End Users

Business Systems

Storage Layer

AWS Lambda

kafka

MATLAB EXPO 2018
Develop a Stream Processing Function in MATLAB

Process each window of data as it arrives

Current score

Previous state

Current window of data to be processed

MATLAB EXPO 2018
Develop a Stream Processing Function in MATLAB

Apply your pre-processing algorithm
Develop a Stream Processing Function in MATLAB

Use the model you created with Classification Learner App
Integrate with Production Systems

Develop a Stream Processing Function in MATLAB

Develop a Streaming Function

```
function new_state = calculateScores(car_id, current_data, old_state, resultsStore)

Preprocess and perform calculations
    current_data = preprocessData(current_data);

Predict driving events
    current_data = predictEvents(current_data);

Count events for each ten second window
    countsByTime = countEvents(current_data);

Write discrete data to mongodb
    updateResultsStore(car_id,countsByTime,resultsStore);

Update new state
    new_state = updateState(countsByTime,old_state);
end
```

Update Mongo database
- Count of events by type and location
- Results of driver scoring
Debug a Stream Processing Function in MATLAB

Production System

Analytics Development

Kafka Connector

MATLAB Compiler SDK

Algorithm Developers

Storage Layer

Business Decisions

End Users
4 Integrate with Production Systems

Debug a Stream Processing Function in MATLAB
Tie in your Dashboard Application

4 Integrate with Production Systems

Edge Devices

Production System

Analytics Development

MATLAB

Algorithm Developers

Business Decisions

End Users

Production System

Kafka Connector

MATLAB Production Server

MATLAB Analytics

Storage Layer

Storage Layer

Business Systems

Integrate with Production Systems

API Gateway

AWS Lambda

kafka

kafka

Power BI

Qlik

Spotfire

Tableau
Complete Your Application

Visualize Results
Scalable Analytics with Enterprise BI Tools

TIBCO Spotfire

Tableau

MATLAB EXPO 2018
Key Takeaways

➢ MATLAB connects directly to your data so you can quickly design and validate algorithms

➢ The MATLAB language and apps enable fast design iterations

➢ MATLAB Production Server enables easy integration of your MATLAB algorithms with enterprise production systems

➢ You to spend your time understanding the data and designing algorithms
Resources to learn and get started

- Data Analytics with MATLAB
- MATLAB Production Server
- MATLAB Compiler SDK
- Statistics and Machine Learning Toolbox
- Database Toolbox
- Mapping Toolbox
- MATLAB with TIBCO Spotfire
- MATLAB with Tableau
- MATLAB with MongoDB

MATLAB EXPO 2018