MATLAB EXPO 2018
Co-diseño Hardware-Software para Control de Motores
Luis López
Takeaways

Model-Based Design for SoC FPGAs

- Enables early validation of specifications using simulation
- Improves design team collaboration and designer productivity.
- Reduces hardware testing time by 5x
Punch Powertrain develops complex SoC-based motor control

- Powertrains for hybrid and electric vehicles
- Need to increase power density and efficiency at a reduced cost
 - Integrate motor and power electronics in the transmission
- New switched reluctance motor
 - Fast: 2x the speed of their previous motor
 - Target to a Xilinx® Zynq® SoC 7045 device
 - Complex: 4 different control strategies
- No experience designing FPGAs!

- Designed integrated E-drive: Motor, power electronics and software
- 4 different control strategies implemented
- Completed in 1.5 years with 2FTE’s
- Models reusable for production
- Smooth integration and validation due to development process – thorough validation before electronics are produced and put in the testbench

[Link to video of presentation]

MATLAB EXPO 2018
Key trend: Increasing demands from motor drives

- Advanced algorithms require faster computing performance.
 - Field-Oriented Control
 - Sensorless motor control
 - Vibration detection and suppression
 - Multi-axis control
What’s an SoC?
Key Trend: SoCs are now used in 36% of new FPGA projects

Challenges in using SoCs for Motor and Power Control

- Integration of software and hardware partitions of algorithm on SoC drives need for collaboration

- Validation of design specifications with limits on access to motors in labs.

- How to make design decisions that cut across system components?
Why use Model-Based Design to develop motor control applications on SoCs?

- Enables early validation of specifications using simulation months before hardware is available.

- Improves design team collaboration and designer productivity by using a shared design environment.

- Reduces hardware testing time by 5x by shifting design from lab to the desktop.
Field-Oriented Control of Velocity Hardware/Software Test Bench

Copyright 2015-2017 The MathWorks, Inc.
Conceptual workflow targeting SoCs

System Simulation Test Bench

- Algorithm C Model
- Algorithm HDL Model
- Model of Motor & Dyno

Linux / VxWorks Reference Framework
- Algorithm C Code
- Algorithm HDL Code
- Programmable Logic Reference Framework

SoC Hard Processor
- SoC Programmable Logic
- Motor & Dyno Hardware

Embedded System

Algorithm developer

Embedded software engineer

Hardware designer
Hardware/software partitioning

Target to ARM

Target to Programmable Logic
Code Generation
3T Develops Robot Emergency Braking System with Model-Based Design

Challenge
Design and implement a robot emergency braking system with minimal hardware testing

Solution
Model-Based Design with Simulink and HDL Coder to model, verify, and implement the controller

Results
- Cleanroom time reduced from weeks to days
- Late requirement changes rapidly implemented
- Complex bug resolved in one day

Link to user story
"With Simulink and HDL Coder we eliminated programming errors and automated delay balancing, pipelining, and other tedious and error-prone tasks. As a result, we were able to easily and quickly implement change requests from our customer and reduce time-to-market."

Ronald van der Meer
3T

A SCARA robot.
Why use Model-Based Design to develop motor control applications on SoCs?

Challenges:

- Integration of software and hardware partitions of algorithm on SoC drives need for collaboration

- Validation of design specifications with limits on access to motors in labs.

- How to make design decisions that cut across system?

Model-Based Design

- Enables early validation of specifications using simulation months before hardware is available.

- Improves design team collaboration and designer productivity by using a shared design environment.

- Reduces hardware testing time by 5x by shifting design from lab to the desktop
Learn More

- **Videos**
 - [HDL Coder: Native Floating Point](#)

- **Webinars**
 - [Prototyping SoC-based Motor Controllers on Intel SoCs with MATLAB and Simulink](#)
 - [How to Build Custom Motor Controllers for Zynq SoCs with MATLAB and Simulink](#)

- **Articles**
 - [How Modeling Helps Embedded Engineers Develop Applications for SoCs](#) (MATLAB Digest)
 - [MATLAB and Simulink Aid HW-SW Codesign of Zynq SoCs](#) (Xcell Software Journal)

- **Tutorials:**
 - [Define and Register Custom Board and Reference Design for SoC Workflow](#)
 - [Field-Oriented Control of a Permanent Magnet Synchronous Machine on SoCs](#)