Development of an artificial vision system to automatically inspect blood typing cards

Marc Blanch
R&D Hardware supervisor
Hardware Medical

Martí Cobos
R&D Hardware engineer
Hardware Medical

30th May 2018
Our mission:

We Design your Dreams
1. Key takeaways
2. Introduction to Organization and Business
3. Innovation Challenges and Achievements
4. How did we get there and leverage MathWorks
5. Further details on solution adopted
6. Concluding Remarks
1. Automated diagnostics for blood typing cards made by a machine vision algorithm involve complex band analysis. Several intrinsic and extrinsic factors involved.

2. Need to evaluate system performance using mathematical/statistical tools.

3. Portability of the machine vision system using MATLAB Coder and Embedded Coder to an embedded system powered by an ARM A9 processor running Android OS.
Idneo is an engineering services company focused in complete product development and working with customers from various sectors of innovative technologies, including Medtech, automotive, industrial, and consumer electronics.

We are a company strongly focused and dedicated to support development of innovative technological advancements.

IDNEO’s potential is that we integrate all product development technical disciplines and expertise in-house which facilitates the process of going from an idea to a product.
Our services

All value chain at same partner
Speed to industrialization Quality-focused

Mechanical Design
Electronics Design
Software Design
Vision Systems Design

Industrial design
Prototyping
Ergonomics
Usability

CONCEPT DEFINITION

PRODUCT DEVELOPMENT

VALIDATION

PRODUCT COMPLIANCE

MANUFACTURING

EMC
Product Safety
Reliability
Functional Testing

CE Mark
FCC
CB Scheme
EMC consulting

Industrialization
Short & large series
IDNEO Vision in computer vision systems development

COMPETITORS
- Bound to proprietary hardware solution
 - Smart vision sensors
 - Smart vision systems
- Bound to limited proprietary software solution in specific platform.

IDNEO
- Customized solution, non-bound to target platform (any HW, any OS)
- Focus on application & image processing algorithms

MATLAB TOOLBOXES & MATLAB CODER + EMBEDDED CODER

IDNEO MATLAB EXPERTISE
- Image Acquisition/Processing Toolbox
- Computer Vision System Toolbox
- Statistics and Machine Learning Toolbox
Embedded Focus: MATLAB vs Standard Computer Vision Libraries

CV LIBRARIES

Advantages:
- Cost-of-ownership
- Native code generation

Disadvantages:
- High complexity, lots of different suites to learn
- Limited algorithms
- Less user-friendly visualization and debugging tools
- Weak documentation and little community support

MATLAB

Advantages:
- Unlimited function set
- Unlimited algorithms combined with other MATLAB toolboxes (machine learning, signal processing, etc)
- Visualization and user-friendly debugging tools
- Great documentation
Challenges

- Develop an algorithm for blood typing cards automatic analysis. Band classification algorithm to be developed with little knowledge of bands properties → Only a few card images with bands interpretation classified by an expert were initially provided.
- Boundaries between positive, negative, doubtful and mixfields (mixed original-transfused blood) interpretations very challenging.
- Band color intensity differed between card types.
- Band localization needs to be addressed for every card using card fiducials.
- High variability coming from manual blood dilution process.
- Strong influence on extrinsic parameters like temperature, humidity, blood properties variation over time after reaction.
- Strong dependence on biologist interpretations, even in doubtful cases expectations system works in all conditions.
Innovation Challenges and Achievements

Challenges

• Integrate machine vision system into an embedded system with an android OS.
• Necessity to show evidences and proof of system results
• Complete system development, not only machine vision software algorithms, but also acquisition system selection (camera and illumination system).
• Tight project schedule, small team and limited resources to develop the project.

Achievements

• The system was developed iteratively following an agile methodology within customer strict schedule expectations.
• Challenging band classification system was developed with the ability to classify bands within 4 different types (negative, positive, doubtful, mix-field)
• Classification system was implemented using machine learning techniques but with a low number of features extracted from bands allowing traceability for algorithm decision tree in every diagnostics proposal.
• Artificial vision system performance exceeded customer expectations.
• System performance evaluation software was developed for customer to asses performance without development tools & metrics were proposed to quantify performance of different algorithm versions.
Initially, the image processing algorithm is developed on MATLAB using Image Processing Toolbox.

System performance is assessed with a dataset of more than 1200 images of different types of cards.

If the system doesn’t reach the performance requirements the algorithm is refined, iteratively.

Once the system performance achieves customer requirements, it is deployed to the embedded system by converting the code to C language.
Further details on solution adopted

Development process – Image processing algorithm development

1. Perform white balance and color equalization
2. Convert image to Luv color space
3. Compute color difference to pure white
4. Search for card fiducials
5. Detect position and analyze ctl and val dots
6. Detect and analyze bands
Further details on solution adopted

Development process – Band Analysis – Mixed Field bands

Example Mixed Field band due to blood transfusion

Band preprocessing

Analyze band skeleton to classify image between positive or mixed field

Image binarization using Otsu method (graythresh)

Perform skeleton binary morphological operation
Development process – Band Analysis – Weak Bands

Further details on solution adopted

Weak bands

Color intensity feature extraction

Logistic regression classification

JUDGED AS POSITIVES

LOGISTICS REGRESSION THRESHOLD BORDER

JUDGED AS WEAKS
Development process - Automated verification tool

With the use of MATLAB App Designer and MATLAB Compiler a verification application was developed to assess system performance without the need of MATLAB.

Main functionalities:
- Analyze cards and store results
- Evaluate system performance (Accuracy)
- Compute confusion matrix

Effortless image processing algorithm integration into the verification application.

Band Analysis

<table>
<thead>
<tr>
<th>Algorithm results</th>
<th>Expected results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doubtful</td>
<td>Mixedfield</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Doubtful</td>
<td>442</td>
</tr>
<tr>
<td>Mixedfield</td>
<td>8</td>
</tr>
<tr>
<td>+</td>
<td>55</td>
</tr>
<tr>
<td>-</td>
<td>13</td>
</tr>
</tbody>
</table>
Development process – Deploying the algorithm into an embedded system

Image processing algorithm development

- Integration test and unit test run in a continuous integration system with *.c files
- From .m files to C code easy to integrate into an embedded processor within minutes.
Further details on solution adopted

Development process – Classification Learner App (Statistics and Machine Learning Toolbox)

Custom machine learning development

Logistic regression:

- Machine learning models coded manually
- Increase of development time due to need of testing every model manually
- Difficult to track the behavior of the model

- Several Machine learning models immediately available (SVM, K-NNs, Bagged trees...)
- Effortless integration into already developed algorithm
- User friendly development tool
Development of an artificial vision system using MathWorks Tools:

- Use of Image Processing Toolbox to extract band features.
- Bands classification using machine learning (both custom built and Machine Learning toolbox)
- System performance evaluation with custom APP using MATLAB Compiler.
- Deploy image processing algorithm to an embedded system with MATLAB Coder and Embedded Coder.

Best Practices:

- Take profit of MATLAB tools to analyze data and develop the code. Time and resources dedication to what is worth instead of coding.
- Develop an APP to test an evaluate code performance, continuous integration of development & verification.
- Metrics evaluation with a big image dataset to quantify system performance.
Recommendations:
- MATLAB Compiler.
- Classification Learner App.
- MATLAB Coder and Embedded Coder.

Future plans:
- Continuous improvement of algorithm accuracy. Final iteration planned.
- Implement the analysis of new card models.
- Explore possibilities of developing a Deep Learning framework for image classification in a strongly regulated market like medical devices.
What’s your Dream?

Headquarters
Polígono Industrial Can Mitjans S/N
08232 Viladecavalls – Barcelona (Spain)
T (+34) 93 700 82 00
F (+34) 93 700 81 40

US Office
10900 North Tantau Ave
Suite 200
Cupertino, CA 95014 (US)

www.idneo.com

Idneo technologies
@Idneo_Tech