Novel Satellite Random Access E-SSA Receiver with SIC – Simulation and Prototyping

Josep Vilà
Head of the Digital Signal Processing Group
Satellite Communications Unit
Indra Sistemas
30th May 2018
Key Takeaways

1. Time-consuming algorithms programming tasks reduced to the minimum
 - Focussing on the Innovative Algorithms Design and Evaluation
 - Minimising Design Phase

2. Same system models used for
 - Algorithms Detailed Design
 - Performance Analysis
 - Assisting Prototyping and Verification

3. MATLAB used in all project phases (not only during the design phase)
Introduction to Organization and Business (I)

€ 2.9 Bn
Sales

Complete offering for all industries

39,000 employees

R&D 6-8% of sales
+200 deals with research centres and universities

Projects in +140 countries

Leading clients in key geographies and industries

Sectors

16% Energy and Industry

16% Financial Services

12% Telecommunications & Media

17% Public Administration and Healthcare

23% Transport & Traffic

16% Security & Defense

Novel Satellite Random Access E-SSA Receiver with SIC – Simulation and Prototyping
Introduction to Organization and Business (II)

- **Space division** is part of the defense & security market
- **Satellite communications** is one of the business unit within space division focused on:
 - Engineering and technical consultancy on satellite communications systems
 - Satellite systems simulation and emulation, from physical to network layer, in house simulation/emulation tools
 - Design, development and manufacturing of satellite communication equipment
 - Specification, design, integration and deployment of satellite communication networks, fixed and mobile
- Broad experience in SatCom projects for different customers worldwide, such as ESA, civil administration or military
Innovation Challenges and Achievements (I)

- The European Space Agency (ESA), in coordination with Eurocontrol, initiated the Iris programme to design a satellite-based communication system able to cope with future Air Traffic Control (ATC) communication needs.

- Work carried out in the frame of the ESA Iris ANTARES project – consortium of more than 15 participants.
Innovation Challenges and Achievements (II)

- A key design decision was the selection of the Return Link multiple access scheme which, finally, was based on Asynchronous-CDMA Random Access.
- On the ground segment, a novel receiver (E-SSA), using state-of-the-art interference cancellation techniques, was used to improve the overall return link spectrum efficiency.
- MATLAB was the key tool used in the simulation, prototyping and verification of the innovative E-SSA receiver.
Approach

- Approach to prototyping the access schemes and, in particular, the ground segment receiver:
 - Trade-off of several multiple access schemes and selection of the most appropriate one
 - Design of the access scheme, involving extensive simulation campaign
 - Prototyping of key elements, being the most critical one the ground segment receiver
 - Verification of the performances in a Test Bed
Design Constraints

- The Return Link multiple access scheme, the waveform and the receiver were designed taking into account the following constraints:
 - Stringent Class-of-Service requirements (continuity, integrity and latency)
 - L-band aeronautical propagation channel
 - Multipath, Doppler, etc.
 - Limited L-band spectrum resources
 - High system spectral efficiency required
 - Bursty traffic generated by a large population of aircrafts
 - Support for fixed and rotary-wing aircrafts
Asynchronous CDMA for the Return Link

- Random Access scheme based on **Asynchronous Code Division Multiple Access (A-CDMA)**
 - Several transmitters send information simultaneously over a single communication channel taking advantage of Spread Spectrum techniques
 - No need for network synchronisation → Simple transmitter (low-cost)

- **Enhanced Spread Spectrum ALOHA (E-SSA) receiver**
 - Combination of Spread Spectrum ALOHA (SSA) with **Successive Interference Cancellation (SIC)**
E-SSA Receiver with SIC

- It provides exceptional performances in scenarios with many transmitters sending asynchronous bursty traffic

- The receiver iteratively detects, demodulates, decodes, regenerates and cancels bursts from the received signal, starting with those with highest power

- Robust to power unbalance
Performances of E-SSA Receiver

- SIC Efficiency of 95% even in severe aeronautical channels
- Low Packet Loss Ratio even with high throughputs
- Spectral efficiency above 1 bit/s/Hz
- Full frequency reuse is possible improving the system efficiency even further
- Performances reached with the final test-bed (blue lines) matched those from early project phases simulations (red lines)
E-SSA Receiver Workflow

- **Design Phase**
 - Receiver detailed design completed in very few months thanks to new algorithms programming with MATLAB
 - MATLAB allowed us focusing on the innovative algorithms design and evaluation

- **Prototyping**
 - FPGA FW development was assisted by MATLAB and Simulink + Xilinx System Generator

- **Verification**
 - E-SSA receiver prototype verification and tested assisted by MATLAB tools to generate input stimuli and post-process receiver output
Simulation Models

- MATLAB has been used in all project phases
- Many MATLAB modules reused in each phase
- MEX files: C/C++ subroutines called as if they were built-in functions
 - Reuse existing C/C++ code
 - Used to validate VHDL coding of critical receiver modules during Prototyping
- Simulink + Xilinx System Generator also used to speed up development of some receiver modules
MathWorks Tools

- MATLAB toolboxes used in all project phases
 - Communications System Toolbox
 - DSP System Toolbox
 - Signal Processing Toolbox
 - Fixed-Point Designer
 - MATLAB Compiler

- Simulink + Xilinx System Generator used for Prototyping
 - Development and debugging of key receiver modules
Identified Best Practices and Learnings

- Reuse models as much as possible
 - In all project phases
 - Among different projects and teams

- Exhaustive simulation with in-depth performance analysis during the design phase
 - Speeds up prototyping and verification phases
 - Minimizes risk of unexpected issues at later project stages
Forward-looking Plans (I)

- Incorporate **Simulink** during Project Design Phase
- More intensive usage of **Simulink + Xilinx System Generator** during Prototyping (already put in practice in on-going projects)
Forward-looking Plans (II)

- Explore the advantages of using
 - **Parallel Computing Toolbox** in projects requiring intensive simulations
 - **System Objects** to speed up simulations that process large streams of data in segments
 - **HDL Coder** to generate VHDL or Verilog code for FPGA from MATLAB functions or Simulink models