
 CEV Flight Dynamics Team

To: Distribution Document Number: FltDyn-CEV-08-148

From: Joel Henry - ORION GN&C Software Functional Manager

Subject: Orion GN&C MATLAB/Simulink Standards (SIA Action #2)

Date: October 1
st
, 2011

Executive Summary

This document satisfies Action #2 of the GN&C Flight Software (FSW) Structured Improvement

Activity (SIA) project and represents the efforts of the MATLAB/Simulink standards splinter

group formed soon after the SIA event.

The MATLAB/Simulink standards splinter group was tasked to define an initial version of the

MATLAB/Simulink guidelines and standards. These standards and guidelines are to be used in

the GN&C Flight Software (FSW) algorithm development effort by each of the GN&C MODE

teams.

 (Signature of Author)

Joel Henry

ORION GN&C Software Functional Manager

NASA/JSC

ii

Orion GN&C

MATLAB/Simulink Standards

Version 15

October 1
st
, 2011GN&C Structured Improvement Activity/LM21 Project Team

iii

REVISION HISTORY

Ver. Date Originator Description
0.0 07/19/08 CSDL/Ian T. Mitchell

1.0 09/02/08 CSDL/Ian T. Mitchell Added memo format.

2.0 11/03/08 CSDL/Ian T. Mitchell Feedback from splinter group.

3.0 12/03/08 CSDL/Ian T. Mitchell Splinter group review.

4.0 04/09/09 CSDL/Joel Henry Further splinter group review and feedback from the Entry Pathfinder

project

5.0 04/15/09 CSDL/Joel Henry Minor corrections

6.0 4/30/2009 CSDL/Joel Henry Added ORION specific naming standards for models, m-files, and root-

level buses

7.0 7/15/2009 CSDL/Joel Henry Minor corrections and clarifications

8.0 11/17/2009 CSDL/Joel Henry Added/modified standards based on lessons learned from the

Entry/Orbit/Ascent Translation process

9.0 11/1/2010 NASA/Joel Henry •Added MA Check field to every standard to indicate whether an

automated Model Advisor check exists for this standard

Updated the following standards:

 jh_0070: Model Configuration Settings

 jh_0109: Merge Blocks

 jh_0042: Required Software

Added the following standards

 mj_0001: CSU Input Bus Naming

 jh_0111: Bus Ordering and Alignment

 jh_0117: Shared CSUs Across Domains

 jr_0001: Use of Atomic functions for Subsystems

 mj_0002: Junction Box Composition

 jy_0010: Graphical Functions

 jr_0002: Number of nested if/for statement blocks

Removed the following standards

 db_1037: States in state machines

10.0 NASA/Joel Henry Added the following standards

 dm_0001: Signal and Bus Element Naming Convention

Updated the following standards:

 jh_0006: Setup files for bus initialization

 hyl_0204: Standard Units

11.0 NASA/Joel Henry Updated the following standards:

 dm_0001: Signal and Bus Element Naming Convention

12.0 4/11/2011 LM/David Shoemaker

NASA/Joel Henry

Added the following standards

 jph_0010: Use of Masks

Updated the following Standards:

 dm_0002: Enumerated Types Usage

 dm_0003: Enumerated Types Header Files

 dm_0004: Enumerated Types RTW Settings

 dm_0005: Enumerated Types Description

 jr_0003: Enumeration Name Convention

 ek_0002: Recursive Functions (changed to mandatory)

Removed the following standards

 jh_0055: Use of Masks (replaced with jph_0010)

13.0 5/5/2011 NASA/Joel Henry Added the following standards

 jh_0202: Testable Unit

 jh_0200: Guidelines for Managing Model Complexity

iv

 jh_0201: eML Function Types

 jr_0004: Error Handling

Removed the following standards

 hyl_0206: Only Boolean inputs to encoder blocks

 jr_0001: Use of Atomic Functions for Subsystems

 jh_0001: Use of ARINC blocks for partition to partition data flow

 jh_0005: Setup files for model parameter initialization

 jh_0006: Setup files for bus initialization

 bd_0137: States in state machines

 jy_0010: Graphical Functions

 hyl_0208: Prevention of divide-by-zero

 hyl_0209: Prevention of negative square root

 hyl_0203: Model Publishing

 jh_0011: Model release

Updated the following Standards:

 jh_0042: Required Software

 jh_0079: Model and Matlab Filenames

 na_0004: Simulink model appearance

 na_0004: Port block name visibility in Simulink models

 jm_0010: Port block names in Simulink models

 dm_0001: Signal and Bus Element Naming Convention

 hyl_0301: Block naming convention

 db_0112: Indexing

 db_0144: Use of Subsystems

 jh_0049: Use of Model References or Reusable Subsystems

 jph_0010: Use of Masks

 na_0012: Use of Switch vs. Case vs. If-Then-Else Action

Subsystem

 db_0116: Simulink patterns for logical constructs with logical

blocks

 jr_0001: Enumeration Name Convention

 na_0006: Guidelines for mixed use of Simulink and Stateflow

 na_0007: Guidelines for use of Flow Charts, Truth Tables and State

Machines

 im_0001: Guidelines for mixed use of Simulink and eML

 im_0008: Source lines of eML

 im_0009: Number of called function levels

 jh_0110: eML Function Reuse

 jh_0029: m-files

 jh_0030: Extrinsic function

 jh_0073: eML Header

 Modeling Guidelines Chart

14.0 9/1/2011 NASA/Joel Henry Added the following standards

 jh_0050: Model References Simulation Mode

 jh_0052: Directory Structure

Updated the following Standards:

 dm_0001: Signal and Bus Element Naming Convention

 jc_0141: Use of Switch block

 jh_0021: Restricted Variable Names

15.0 10/1/2010 NASA/Joel Henry Added the following standards

 do_0001: Declaring Local Variables in eml

Updated the following Standards:

 jh_0064: eML if statement

v

TABLE OF CONTENTS

TABLES .. viii
ABBREVIATIONS AND ACRONYMS .. viii

1 INTRODUCTION .. 1
2 RELATED DOCUMENTATION.. 1
2.1 Applicable Documents .. 1
2.2 Information Documents .. 1
3 PURPOSE AND DESCRIPTION .. 1

4 STANDARDS .. 2
4.1 System Requirements .. 2

4.1.1 jh_0042: Required Software .. 2
4.1.2 jh_0043: Approved Platforms .. 3

4.2 File and Directory Naming Conventions ... 3
4.2.1 ar_0001: Filenames ... 3
4.2.2 jh_0079: Model and Matlab Filenames ... 4
4.2.3 ar_0002: Directory names ... 5
4.2.4 jh_0052: Directory Structure ... 6

4.3 Simulink... 6
4.3.1 Diagram Appearance ... 6

4.3.1.1 na_0004: Simulink model appearance.. 6
4.3.1.2 jh_0007: Blocks in a model ... 7
4.3.1.3 db_0043: Simulink font and font size .. 8
4.3.1.4 hyl_0103: Model color coding ... 9

4.3.2 Model Configuration Options .. 10
4.3.2.1 jh_0070: Model Configuration Settings ... 10

4.3.3 Model Documentation.. 10
4.3.3.1 hyl_0112: Title on each page ... 10
4.3.3.2 hyl_0113: Notes on each page ... 11
4.3.3.3 hyl_0202: Use of revision/trace block .. 12
4.3.3.4 hyl_0114: Documentation of deviations to standards... 13

4.3.4 Inports and Outports .. 14
4.3.4.1 jc_0211: Usable characters for Inport block and Outport block ... 14
4.3.4.2 mdb_0042: Port block in Simulink models .. 14
4.3.4.3 na_0005: Port block name visibility in Simulink models ... 15
4.3.4.4 jc_0081: Icon display for Port block .. 16
4.3.4.5 jm_0010: Port block names in Simulink models .. 17
4.3.4.6 jh_0018: Variable type casting ... 17

4.3.5 Signals and Buses .. 18
4.3.5.1 jc_0221: Usable characters for signal line name .. 18
4.3.5.2 jh_0040: Usable characters for Simulink Bus names ... 19
4.3.5.3 bn_0002: Signal name length limit .. 20
4.3.5.4 jh_0041: Simulink Bus Name Length Limit .. 20
4.3.5.5 jh_0051: Simulink Bus Format .. 21
4.3.5.6 dm_0001: Signal and Bus Element Naming Convention ... 24
4.3.5.7 mj_0001: CSU Input Bus Naming ... 24
4.3.5.8 jh_0111: Bus Ordering and Alignment .. 26
4.3.5.9 jh_0117: Shared CSUs Across Domains .. 27
4.3.5.10 na_0010: Grouping data flows into signals ... 28
4.3.5.11 na_0009: Entry versus propagation of signal labels ... 30
4.3.5.12 hyl_0311: Naming of signals passed through multiple subsystems ... 31
4.3.5.13 na_0008: Display of labels on signals.. 32
4.3.5.14 db_0097: Position of labels for signals and buses.. 33
4.3.5.15 hyl_0110: Branching line format ... 34
4.3.5.16 mdb_0032: Simulink signal appearance .. 35
4.3.5.17 db_0081: Unconnected signals, block inputs and block outputs .. 35
4.3.5.18 jh_0061: Use of Parameters ... 36

4.3.6 Blocks ... 37
4.3.6.1 hyl_0302: Usable characters for Block Names .. 37

vi

4.3.6.2 hyl_0305: Block name uniqueness ... 38
4.3.6.3 hyl_0309: Block name usage ... 39
4.3.6.4 jh_0062: Constant Block Naming .. 39
4.3.6.5 jm_0002: Block resizing .. 40
4.3.6.6 db_0142: Position of block names ... 40
4.3.6.7 jc_0061: Display of block names ... 41
4.3.6.8 db_0140: Display of basic block parameters .. 42
4.3.6.9 mdb_0141: Signal flow in Simulink models .. 43
4.3.6.10 jc_0171: Maintaining signal flow when using Goto and From blocks ... 43
4.3.6.11 jc_0281: Naming of Trigger Port block and Enable Port block ... 44

4.3.7 Block Usage ... 45
4.3.7.1 hyl_0201: Use of standard library blocks only ... 45
4.3.7.2 jh_0101: Use of Right-Handed Quaternions only .. 46
4.3.7.3 na_0003: Simple logical expressions in If Condition block ... 46
4.3.7.4 na_0002: Appropriate implementation of fundamental logical and numerical operations 48
4.3.7.5 na_0011: Scope of Goto and From blocks ... 49
4.3.7.6 jc_0141: Use of the Switch block... 50
4.3.7.7 hyl_0207: Limiting input to multiport switches ... 52
4.3.7.8 jc_0121: Use of the Sum block .. 52
4.3.7.9 jc_0131: Use of Relational Operator block .. 54
4.3.7.10 hyl_0211: Prohibit use of test points ... 54
4.3.7.11 jh_0109: Merge Blocks .. 55
4.3.7.12 mjc_0111: Direction of Subsystem .. 55

4.3.8 Block Parameters ... 56
4.3.8.1 db_0112: Indexing ... 56
4.3.8.2 db_0110: Tunable parameters in basic blocks .. 58

4.3.9 Subsystems ... 59
4.3.9.1 jc_0201: Usable Characters for Subsystem Names .. 59
4.3.9.2 bn_0001 Subsystem name length limit .. 60
4.3.9.3 hyl_0307: Use of subsystem name ... 60
4.3.9.4 db_0144: Use of Subsystems ... 61
4.3.9.5 jh_0049: Use of Model References or Reusable Subsystems ... 61
4.3.9.6 jh_0050: Model References Simulation Mode ... 63
4.3.9.7 db_0146: Triggered, enabled, conditional Subsystems .. 65
4.3.9.8 jph_0010: Use of Masks ... 66
4.3.9.9 hyl_0308: Use of reference model name .. 68

4.3.10 Subsystem Patterns .. 69
4.3.10.1 na_0012: Use of Switch vs. Case vs. If-Then-Else Action Subsystem .. 69
4.3.10.2 db_0114: Simulink patterns for If-then-else-if constructs.. 72
4.3.10.3 db_0115: Simulink patterns for case constructs ... 73
4.3.10.4 bn_0003: Use of If-Then-Else Action Subsystem to Replace Multiple Switches .. 75
4.3.10.5 db_0116: Simulink patterns for logical constructs with logical blocks .. 77
4.3.10.6 db_0117: Simulink patterns for vector signals ... 78
4.3.10.7 jc_0351: Methods of initialization ... 80

4.3.11 Enumerations ... 82
4.3.11.1 dm_0002: Enumerated Types Usage ... 82
4.3.11.2 dm_0003: Enumerated Types Header Files ... 82
4.3.11.3 dm_0004: Enumerated Types RTW Settings ... 83
4.3.11.4 dm_0005: Enumerated Types Description ... 83
4.3.11.5 jr_0003: Enumeration Name Convention .. 84

4.4 Model Architecture .. 85
4.4.1 Simulink

®
, eML, and Stateflow

®
 Partitioning .. 85

4.4.1.1 jh_0202: Testable Units ... 85
4.4.1.2 na_0006: Guidelines for mixed use of Simulink and Stateflow ... 88
4.4.1.3 na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines .. 93
4.4.1.4 im_0001: Guidelines for mixed use of Simulink and eML .. 93
4.4.1.5 jh_0200: Guidelines for Managing Model Complexity .. 96
4.4.1.6 ek_0010: Simulink algorithm States recommendations .. 97

4.4.2 Subsystem Hierarchies ... 98
4.4.2.1 mdb_0143: Similar block types on the model levels .. 98

4.4.3 ORION GN&C Model Architecture Decomposition .. 99
4.4.3.1 im_0015: ORION GN&C Model Architecture .. 99
4.4.3.2 im_0003: Controller model .. 100

vii

4.4.3.3 im_0004: Top layer / root level .. 101
4.4.3.4 im_0005: Trigger layer .. 101
4.4.3.5 im_0006: Structure layer .. 102
4.4.3.6 mj_0002: Junction Box Composition ... 103
4.4.3.7 im_0007: Data flow layer ... 104
4.4.3.8 jh_0056: Sample Times.. 105

4.5 Stateflow .. 106
4.5.1 Chart Appearance .. 106

4.5.1.1 db_0123: Stateflow port names .. 106
4.5.1.2 db_0129: Stateflow transition appearance .. 106
4.5.1.3 db_0133: Use of patterns for Flowcharts ... 107
4.5.1.4 db_0132: Transitions in Flowcharts ... 108
4.5.1.5 mjc_0501: Format of entries in a State block ... 109
4.5.1.6 jc_0511: Setting the return value from a graphical function .. 110
4.5.1.7 jc_0531: Placement of the default transition .. 111
4.5.1.8 jc_0521: Use of the return value from graphical functions .. 112

4.5.2 Stateflow data and operations ... 113
4.5.2.1 na_0001: Bitwise Stateflow operators .. 113
4.5.2.2 jc_0451: Use of unary minus on unsigned integers in Stateflow .. 114
4.5.2.3 na_0013: Comparison operation in Stateflow .. 115
4.5.2.4 db_0122: Stateflow and Simulink interface signals and parameters .. 116
4.5.2.5 db_0125: Scope of internal signals and local auxiliary variables ... 117
4.5.2.6 jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow 117
4.5.2.7 jc_0491: Reuse of variables within a single Stateflow scope ... 118
4.5.2.8 jc_0541: Use of tunable parameters in Stateflow ... 120
4.5.2.9 db_0127: MATLAB commands in Stateflow .. 120
4.5.2.10 jm_0011: Pointers in Stateflow .. 121

4.5.3 Events ... 121
4.5.3.1 db_0126: Scope of events .. 121
4.5.3.2 jm_0012: Event broadcasts .. 122

4.5.4 Statechart Patterns .. 123
4.5.4.1 db_0150: State machine patterns for conditions ... 123
4.5.4.2 db_0151: State machine patterns for transition actions .. 124

4.5.5 Flowchart Patterns .. 125
4.5.5.1 db_0148: Flowchart patterns for conditions ... 125
4.5.5.2 db_0149: Flowchart patterns for condition actions ... 127
4.5.5.3 db_0134: Flowchart patterns for If constructs .. 128
4.5.5.4 db_0159: Flowchart patterns for case constructs ... 130
4.5.5.5 db_0135: Flowchart patterns for loop constructs ... 131

4.6 Embedded MATLAB (eML) ... 133
4.6.1 jh_0201: eML Function Types .. 133
4.6.2 im_0008: Source lines of eML .. 136
4.6.3 im_0009: Number of called function levels .. 137
4.6.4 jr_0002: Number of nested if/for statement blocks ... 137
4.6.5 jh_0110: eML Function Reuse .. 138
4.6.6 im_0010: Number of inline function calls... 139
4.6.7 jh_0063: eML block input/output settings .. 139
4.6.8 jh_0021: Restricted Variable Names .. 140
4.6.9 jh_0064: eML if statement .. 140
4.6.10 jh_0023: Arrays .. 141
4.6.11 jh_0024: Strings .. 142
4.6.12 jh_0025: Structures... 143
4.6.13 jh_0026: Switch/case statements .. 143
4.6.14 jh_0027: Multiple Code Paths .. 144
4.6.15 jh_0029: m-files .. 146
4.6.16 jh_0030: Extrinsic function... 146
4.6.17 ek_0002: Recursive functions ... 146
4.6.18 ek_0003: Global Variables ... 147
4.6.19 jh_0073: eML Header ... 148
4.6.20 jh_0093: Parameter Bus for eML ... 149
4.6.21 jh_0084: eML Comments .. 149

viii

4.6.22 do_0001: Declaring Local Variables in eML ... 149
4.7 Code Development Standards ... 150

4.7.1 hyl_0204: Standard units ... 150
4.7.2 jr_0004: Error Handling ... 152

4.8 Configuration Management ... 152
4.8.1 jh_0004: MATLAB artifacts under configuration control .. 152

5 Appendix .. 1
5.1 Modeling Guidelines Chart ... 1
5.2 Configuration Settings ... 1

5.3 Model Advisor Standards Checks Summary ... 1
5.4 Subsystem Masking Methods and Guidelines ... 5

TABLES
Table 1 - Applicable Documents .. 1

Table 2 - Information Documents ... 1

ABBREVIATIONS AND ACRONYMS

CEV Crew Exploration Vehicle

FDT Flight Dynamics Team

FSW Flight Software

GN&C Guidance, Navigation and Control

UML Unified Modeling Language

CSU Computer Software Unit

PSP Pilot Support Package

MAAB Mathworks Automotive Advisory Board

SDP Software Development Plan

eML Embedded Matlab

ARINC Avionics Application Standard Software Interface

SDK Software Development Kit

MRB Model Reference Block

V&V Verification and Validation

1 INTRODUCTION

This document describes the standards and guidelines that the Orion Crew Exploration Vehicle

(CEV) Flight Dynamics Team (FDT) will use while developing the Guidance, Navigation and

Control (GN&C) algorithms in the MATLAB/Simulink environment.

The GN&C algorithms developed in this manner will be delivered to the Flight Software (FSW)

team and C++ source code will be auto-generated and integrated with other flight software

components.

This standards and guidelines document has been developed using the Mathworks Automotive

Advisory Board (MAAB) guidelines document as a starting point with additions from the joint

Orion NASA/Contractor team.

2 RELATED DOCUMENTATION

2.1 Applicable Documents

This document is a child document to the Orion GN&C Algorithm Development Plan, which

specifies the overall plan for FDT development, testing and delivery of GN&C algorithms.

Table 1 lists the documents applicable to this MATLAB Standards document.

Table 1 - Applicable Documents

Reference No. Title

 Control Algorithm Modeling Guidelines Using MATLAB®, Simulink®,

and Stateflow®, Version 2.0, MathWorks Automotive Advisory Board

(MAAB), July 27, 2007

CEV-GNC-11-014 GNC Model Development Cyclomatic Complexity Guidelines Memo

FltDyn-CEV-11-52 Error Handling and Logging Guidance

2.2 Information Documents
Table 2 - Information Documents

Reference No. Title

LM CEV-T-005 LM Software Development Plan (SDP)

3 PURPOSE AND DESCRIPTION

The purpose of this document is to define standards and guidelines for how the FDT will implement

and model their GN&C algorithms in the MATLAB/Simulink environment. Such standards will

foster consistency across all of the FDT‟s five mode teams (Ascent Abort, Orbit, Entry, Navigation

and Integrated GN&C), and provide for tighter cohesion in the GN&C design, improve readability

and interpretation, and ultimately expedite module integration and testing.

2

The Priority field in each of the standards indicates the importance. The three priority types are

Mandatory, Strongly Recommended, and Recommended. The descriptions of each of these types

are below:

o Mandatory – flagged in inspection, must be fixed before any release (no schedule

relief, “shall”)

o Strongly Recommended, flagged in inspection, should be high-priority to fixing

before release, but –if resource limited – could be released in engineering releases,

but must be fixed prior to flight (i.e., there may be some schedule relief for fixing

this, is a “shall“) and required approval for acceptance.

o Recommended – flagged in inspection, not required fixed before release or flight.

(“nice to have”, or “guideline”, a “should”)

4 STANDARDS

4.1 System Requirements

4.1.1 jh_0042: Required Software

ID: Title jh_0042: Required Software

Priority Mandatory

Scope ORION

MATLAB

Version
See Description/Version

MA Check No

Prerequisites None

Description

The minimum required software for use with the ORION GN&C FSW models is as

follows:

The use of blocks from Simulink toolboxes are prohibited for CSU development.

Description Software Version

Minimum Required for

Simulation at CSU level

Matlab

Simulink

Stateflow

C++ Compiler (ex. Visual Studio C++ 2008

for Win32)

2010b SP1

2010b SP1

2010b SP1

Minimum Required for

Simulation at Domain

Level

Those listed above

ARINC PSP (Pilot Support Package)

2.1

Required for Code

Generation

Real-Time Workshop

Real-time Workshop Embedded Coder

2010b SP1

2010b SP1

3

Stateflow Coder

Trick PSP

Microsoft SDK (needed for ARINC PSP on

Win32)

2010b SP1

1.8

6.1 or later

Required for Advanced

Model Analysis

Simulink Verification and Validation

2010b SP1

Required for Running

Unit Tests

System Test 2010b SP1

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.3

4.1.2 jh_0043: Approved Platforms

ID: Title jh_0043: Approved Platforms

Priority Mandatory

Scope ORION

MATLAB

Version
2010b

MA Check No

Prerequisites None

Description

The supported OS environments are listed below:

Windows 32-bit

Linux 32-bit

Environments other than these are not compatible with the PSPs (Pilot Support

Packages) and the USA S-function utilities

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.1

4.2 File and Directory Naming Conventions

4.2.1 ar_0001: Filenames

ID: Title ar_0001: Filenames

Priority Mandatory

Scope MAAB

MATLAB All

4

Version

MA Check Yes

Prerequisites None

Description

A filename conforms to the following constraints:

FORM filename = name.extension

name: no leading digits, no blanks

extension: no blanks

UNIQUENESS all filenames within the parent project directory

ALLOWED

CHARACTERS
name
a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G

H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 _

extension:

a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G

H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9

UNDERSCORES name:

 can use underscores to separate parts

 cannot have more than one consecutive underscore

 cannot start with an underscore

 cannot end with an underscore

extension:

 should not use underscores

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.2.2 jh_0079: Model and Matlab Filenames

ID: Title jh_0079: Model and Matlab Filenames

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The file names for the Simulink model files and embedded Matlab script files must

conform to the following guidelines:

CSU Simulink

model name <3 letter Domain abb.>_<CSU abb.>_CSU.mdl

Eml functions <3 letter Domain abb.>_<CSU abb.>_<function name>.m

5

stored as separate

*.m files

*Note: ALL separately stored *.m files (a.k.a “dot-M” files)

must have the eml.inline(„never‟); declaration (described in

jh_0202: Testable Unit)

“Model reference”

model used once

within a single

CSU

<3 letter Domain abb.>_<CSU abb.>_<function name>_MR.mdl

“Model reference”

model used

multiple times

within a single

CSU

<3 letter Domain abb.>_<CSU abb.>_<function name>_MR.mdl

“Model reference”

model used within

multiple CSUs in

single Domain

<3 letter Domain abb.>_<abb of the CSU source>_<function name>_MR.mdl

*one of the CSUs will be the main source of the model – this is the CSU abb to

use in the naming

“Model reference”

model used within

a multiple CSUs in

multiple Domains

GNCLib_<function name>.mdl

*this model must reside in the GNC Shared Model Library

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.1

4.2.3 ar_0002: Directory names

ID: Title ar_0002: Directory names

Priority Mandatory

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

A directory name conforms to the following constraints:

FORM directory name = name

name: no leading digits, no blanks

UNIQUENESS all directory names within the parent project directory

ALLOWED

CHARACTERS

name:

 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G

H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 _

UNDERSCORES name:

6

 can use underscores to separate parts

 cannot have more than one consecutive underscore

 cannot start with an underscore

 cannot end with an underscore

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.2.4 jh_0052: Directory Structure

ID: Title jh_0052: Directory Structure

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites ar_0002: Directory Names

Description

The directory structure for the ORION project shall mimic the example below:

Junction Box models should be placed in the following directory:

<3 Letter Domain> / <JBox_Name>.mdl

CSUs should be placed in the following directory:

<3 Letter Domain> / <CSU Name> / <CSU_Name>.mdl

CSU Memos should be placed in the following directory:

<3 Letter Domain> / <CSU Name> / Memo

Unit Tests should be placed in the following directory:

<3 Letter Domain> / <CSU Name> / Unit_Tests

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.3 Simulink

4.3.1 Diagram Appearance

4.3.1.1 na_0004: Simulink model appearance

ID: Title na_0004 Simulink model appearance

7

Priority Recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

The model appearance settings should conform to the following guidelines when

the model is released. The user is free to change the settings during the

development process.

Note: The CSU_template.mdl file, included in the ORION Library, has the

recommended settings in place.

View Options Setting

Model Browser unchecked

Screen color white

Status Bar checked

Toolbar checked

Zoom factor Normal (100%)

Block Display Options Setting

Background Color white

Foreground Color black

Execution Context Indicator unchecked

Library Link Display none

Linearization Indicators checked

Model/Block I/O Mismatch unchecked

Model Block Version unchecked

Sample Time Colors none

Sorted Order unchecked

Signal Display Options Setting

Port Data Types unchecked

Signal Dimensions unchecked

Storage Class unchecked

Test point Indicators checked

Viewer Indicators checked

Wide Non-scalar Lines checked

Simulation Setting

Simulation Mode Normal

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.2

4.3.1.2 jh_0007: Blocks in a model

8

ID: Title jh_0007: Blocks in a model

Priority Recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Each layer of a model must be printable and readable on 11x17 size paper.

The use of the CSU_template.mdl file and the ORION library will enforce this

standard using borders.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.2

4.3.1.3 db_0043: Simulink font and font size

ID: Title db_0043: Simulink font and font size

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites jh_0007: Blocks in a Model

Description

All text elements (block names, block annotations and signal labels) except free text

annotations within a model must have the same font style and font size. Fonts and

font size should be selected for legibility.

Note: The ORION Library blocks adhere to this standard and do not need to be

changed.

Note: The selected font should be directly portable (e.g. Simulink/Stateflow default

font) or convertible between platforms (e.g. Arial/Helvetica 12pt).

Note: The CSU_template.mdl file, included in the ORION Library, has a Title text

box and Description text box that are of the recommended format.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

9

4.3.1.4 hyl_0103: Model color coding

ID: Title hyl_0103: Model color coding

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

The background color shall be set to:

a) Light blue for subsystems blocks

b) Orange for referenced models

c) Cyan for inport and outport blocks

d) Yellow for From, Goto, and Goto Visibility tags

e) Red for non-ORION Library blocks

 (Colorspec RGB value = [1.000000, 0.501961, 0.501961])

f) White for Library blocks

g) Gray for Embedded Matlab Blocks

h) Light Brown for Domain level blocks (non-CSU)

 (Colorspec RGB value = [0.792157, 0.772549, 0.725490])

Note: The blocks in the ORION Library are set to the required background color

Example:

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

10

4.3.2 Model Configuration Options

The model configuration options should be set to those indicated in the Appendix 5.1.

4.3.2.1 jh_0070: Model Configuration Settings

ID: Title jh_0070: Model Configuration Settings

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Each CSU must have the model configuration settings set to the configuration object

specified below – which are included in the latest version of the ORION Library.

CSUs: set to CSUCfgSet or CSUCfgSetMR

Junction Boxes: set to JBoxCfgSet

Domains and above: EmptyBoxCfgSet

Note: These settings will ensure consistency and compatibility across all CSUs and

allow proper generation of autocode.

Note: The ORION Library includes the CSUCfgSet which is a configuration object

that complies with all of these settings. Also, the CSU_template model included in

the ORION Library uses this config file.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.1

4.3.3 Model Documentation

4.3.3.1 hyl_0112: Title on each page

ID: Title hyl_0112: Title on each page

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

11

Description

Each page shall have a title. This allows pages to be easily identified when printed.

Example:

Note: The title will not transfer to the autocode

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.3.2 hyl_0113: Notes on each page

ID: Title hyl_0113: Notes on each page

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description At least one note should be placed on each page explaining the function contained on

that page. Additional notes should be placed on the page as needed. The goal is to

12

document each page with the rationale, assumptions, and intent of the design. The

notes should not contain algorithms. Instead, references should be made in the notes

to the algorithm specification.

Comments should not be index specific because the index used in the autocode may

differ.

Example:

Note: The notes will not transfer to the autocode

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.3.3.3 hyl_0202: Use of revision/trace block

ID: Title hyl_0202: Use of revision/trace block

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

13

Prerequisites None

Description

Each model shall have a revision block that maintains a unique identification trace

tag, a version number which matches the version in the Configuration Management

system, modification date, and author.

This block is included in the ORION library as the Model_Info block. It contains

the following info:

 Author

 Date Modified

 Version and Instance (controlled by the CM Synergy database)

 CSU name

 Current System Name

 Parent system Name

This block is automatically included in the CSU_template.mdl and in all new

subsystems from the ORION Library.

Example:

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.2

4.3.3.4 hyl_0114: Documentation of deviations to standards

ID: Title hyl_0114: Documentation of deviations to standards

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites hyl_0113: Notes on each page

Description Any deviations from the standards shall be documented in the notes.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

14

4.3.4 Inports and Outports

4.3.4.1 jc_0211: Usable characters for Inport block and Outport block

ID: Title jc_0211: Usable characters for Inport block and Outport block

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

The names of all Inport blocks and Outport blocks should conform to the following

constraints:

FORM name:

 should not start with a number

 should not have blank spaces

 carriage returns are not allowed

ALLOWED

CHARACTERS

name:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 _

UNDERSCORES name:

 can use underscores to separate parts

 cannot have more than one consecutive underscore

 cannot start with an underscore

 cannot end with an underscore

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.4.2 mdb_0042: Port block in Simulink models

ID: Title mdb_0042: Port block in Simulink models

Priority Strongly recommended

Scope ORION (modified MAAB db_0042)

MATLAB

Version
All

MA Check No

15

Prerequisites None

Description

In a Simulink model, the ports comply with the following rules:

 Inports should be placed on the left side of the diagram, but they can be moved

in to prevent signal crossings.

 Outports should be placed on the right side, but they can be moved in to

prevent signal crossings.

 Duplicate Inports shall not be used.

 Inputs and outputs should be left and right justified

Correct

Incorrect

Notes on the incorrect model

 Inport 2 should be moved in so it does not cross the feed back loop lines.

 Outport 1 should be moved to the right hand side of the diagram.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.3.4.3 na_0005: Port block name visibility in Simulink models

ID: Title na_0005: Port block name visibility in Simulink models

Priority Strongly recommended

16

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

The name of an Inport or Outport should not be hidden. ("Format / Hide Name" is not

allowed.)

Note: the correct setting is applied to the Inport and Outport blocks in the ORION

Library.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.2

4.3.4.4 jc_0081: Icon display for Port block

ID: Title jc_0081: Icon display for Port block

Priority Recommended

Scope MAAB

MATLAB

Version
R14 and later

MA Check Yes

Prerequisites None

Description

The „Icon display‟ setting should be set to „Port number‟ for Inport and Outport

blocks.

Correct

Incorrect

17

Note: the correct setting is applied to the Inport and Outport blocks in the ORION

Library.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.4.5 jm_0010: Port block names in Simulink models

ID: Title jm_0010: Port block names in Simulink models

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites

db_0042: Ports in Simulink models

na_0005: Port block name visibility in Simulink models

na_0009: Entry versus propagation of signal labels

Description

The names of Inport blocks and Outport blocks must match the corresponding signal

or bus names.

Exceptions:
 When any combination of an Inport block, an Outport block, and any other

block have the same block name, a suffix or prefix should be used on the

Inport and Outport blocks.

 One common suffix is “_In” for Inports and “_Out” for Outports.

 Any suffix or prefix can be used on the ports, however the selected option

should be consistent.

 Library blocks and reusable subsystems that encapsulate generic functionality.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.2

4.3.4.6 jh_0018: Variable type casting

ID: Title jh_0018: Variable type casting

Priority Recommended

18

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

All CSU top level inputs and outputs must be set to the appropriate Simulink bus

object. The bus explicitly defines all of the attributes of the data including the type,

dimension, and rate. This will ensure compatibility with the higher level empty box

architecture.

Also, if model reference blocks are used within a CSU, the input and output data

attributes should be explicitly defined in the ports (dimension, bus type, data type)

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.3.5 Signals and Buses

Signal labels are used to make model functionality more understandable from the Simulink

diagram. They can also be used to control the variable names used in simulation and code

generation. Signal labels should be entered only once (at the point of signal origination). Often it is

desirable to also display the signal name elsewhere in the model. In these cases, the signal name

should be inherited until the signal is functionally transformed. (Passing a signal through an

integrator is functionally transforming. Passing a signal through an Inport into a nested subsystem is

not.) Once a named signal is functionally transformed, a new name should be associated with it.

Signals may be scalars, vectors, or buses. They may carry data or control flows. Unless explicitly

stated otherwise, the following naming rules apply to all types of signals.

4.3.5.1 jc_0221: Usable characters for signal line name

ID: Title jc_0221: Usable characters for signal line names

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

All named signals should conform to the following constraints:

FORM name:

 should not start with a number

19

 should not have blank spaces

 carriage returns are not allowed

ALLOWED

CHARACTERS

name:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 _

UNDERSCORES name:

 can use underscores to separate parts

 cannot have more than one consecutive underscore

 cannot start with an underscore

 cannot end with an underscore

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.5.2 jh_0040: Usable characters for Simulink Bus names

ID: Title jh_0040: Usable characters for Simulink Bus Names

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes – this check is covered by jc_0221

Prerequisites None

Description

All Simulink Bus names should conform to the following constraints:

FORM name:

 should not start with a number

 should not have blank spaces

 carriage returns are not allowed

ALLOWED

CHARACTERS

name:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 _

UNDERSCORES name:

 can use underscores to separate parts

 cannot have more than one consecutive underscore

 cannot start with an underscore

 cannot end with an underscore

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

20

Last Change V1.0

4.3.5.3 bn_0002: Signal name length limit

ID: Title bn_0002: Signal name length limit

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites jc_0221: Usable characters for signal line names

Description

The names of all signals must be unique. The Compiler limit of 32 characters must be

observed when creating signal names that are used for variable names in code.

32 characters is the maximum limit

Example:

Signal_Value_Argument_Variable_Example - should be changed to

signal_Value_Argument_Variable_Ex

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.2

4.3.5.4 jh_0041: Simulink Bus Name Length Limit

ID: Title jh_0041: Simulink Bus name length limit

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes – this check is covered by bn_0002

Prerequisites jh_0040: Usable characters for Simulink Bus Names

Description

The names of all Buses must be unique for the entire software model unless the

contents of the bus are identical. Bus names must start with a capital letter. The

Compiler limit of 32 characters must be observed when creating signal names that are

used for variable names in code.

32 characters is the maximum limit

Example:

BUS_Value_Argument_Variable_Example - should be changed to

BUS_Value_Argument_Variable_Ex

21

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.1

4.3.5.5 jh_0051: Simulink Bus Format

ID: Title jh_0051: Simulink Bus Format

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites jh_0040: Usable characters for Simulink Bus Names

Description

The root level of a CSU should have 2 inports and 1 outport and follow the following

standard:

Input port and bus object name:

 <3 letter Domain abb.>_<CSU abb.>_IN

Input parameter port and bus object name:

 <3 letter Domain abb.>_<CSU abb.>_PRM

Output port and bus object name:

 <3 letter Domain abb.>_<CSU abb.>_OUT

Internal bus object name (these are buses that are not used outside of the CSU):

 <3 letter Domain abb.>_<CSU abb.>_<your_internal_bus_name>

The script that loads the CSU input, output, and parameter buses to the workspace

should use the following naming convention:

 loadCSUBuses_<3 letter Domain abb>_<CSU abb>.m

The script that loads the internal bus to the workspace should use the following

naming convention:

 loadIntlBuses_<3 letter Domain abb>_<CSU abb>.m

The top level IO ports should be set to non-virtual to ensure that the bus structure is

retained in the autocode. The following diagram shows the dialog box for an input

port with the “Output as non-virtual bus” option checked. Version 2.0 of the Orion

Library has this option set by default for the input ports/output ports/ and bus creator

blocks.

22

Example of root level of CSU model – the IN/OUT/PRM ports are shown:

23

Large Simulink Buses should contain nested buses to improve data organization

similar to that of structured data. Organizing the buses into nested buses greatly

increases the accessibility of the data.

Warning: when using nested buses do not name the element the same name as

the bus type. This will cause errors in the autocode. Also, the element name and

bus type should not differentiate on case alone.

For example:

A quaternion Bus may consist of the following signals:

BUS_quat_dbl:

 s (1x1) double

 v (3x1) double

The input bus may contain multiple quaternions as following:

BUS_Input

 Input_data (3x3) double

 quat1(BUS_quat_dbl)

 quat2(BUS_quat_dbl)

Note: The ORION Library uses the following buses for quaternion and euler math.

These buses are automatically loaded when the library is used.

 BUS_euler_dbl:

o yaw: (1x1) double

o pitch: (1x1) double

o roll: (1x1) double

o sequence: (1x1) int32

 BUS_euler_sgl:

o yaw: (1x1) single

o pitch: (1x1) single

o roll: (1x1) single

o sequence: (1x1) int32

 BUS_quat_dbl:

o s: (1x1) double

o v: (1x1) double

 BUS_quat_sgl:

o s: (1x1) single

o v: (1x1) single

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.3

24

4.3.5.6 dm_0001: Signal and Bus Element Naming Convention

ID: Title dm_0001: Signal and Bus Element Naming Convention

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites

Description

Signal and Bus Element names shall adhere to the following convention:

 The first letter of each word contained in a signal or bus element name shall

be capitalized.

 Each word contained within a signal or bus element name shall be separated

with a single underscore or with no space at all.

 For multi-word signal or bus element names the first letter of second and

subsequent words shall be capitalized (example: Multi_Word_Identifier or

MultiWordIdentifier).

 Blank characters shall not be used to separate words use to form signal or bus

element names.

 When a signal or bus element name contains an acronym, the acronym should

be represented in uppercase letters (upper case capitalization).

Note: This does not apply to the common quaternion and euler buses used by blocks

in the ORION Library.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.3

4.3.5.7 mj_0001: CSU Input Bus Naming

ID: Title mj_0001: CSU input Bus Naming

Priority Recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites jh_0051: Simulink Bus Format

Description

CSU input bus types should have field names identical to their upstream CSU output

bus field names whenever possible. This facilitates traceability and reduces error

potential. Exceptions may be made on a case by case basis to keep CSUs generic or

for other reasons. Variable name changes inside of CSUs are permissible at the CSU

developer‟s discretion.

25

Example of acceptable internal signal name changes with selected CSU inputs feeding

subsystems with differing input port names:

Do not change the variable names at the Junction Box Level (shown below)

26

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.3.5.8 jh_0111: Bus Ordering and Alignment

ID: Title jh_0111: Bus Ordering and Alignment

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites jh_0051: Simulink Bus Format

Description

All elements in a Simulink Bus should be ordered largest to smallest to prevent data

from overlapping a 32-bit boundary. This restriction is related to a limitation on the

target processor that must be realized in the source of the autocode to prevent issues.

Bus must be ordered based on data type in descending order of size, i.e. double >

27

single > uint32 > uint16 > uint8 (Boolean is treated like an uint8).

For Example, the following bus will correctly fall on 32-bit boundary.

float a;

float b

uint8 c[3];

However, this bus will not:

float a;

uint8 c[3];

float b;

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.3.5.9 jh_0117: Shared CSUs Across Domains

ID: Title jh_0117: Shared CSUs Across Domains

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites jh_0051: Simulink Bus Format

Description

In some rare cases, a CSU may be used in more than one domain. This CSU will

perform the same function in each CSU and is not modified in any way.

If this is the case one of the domains should be selected as the owner of the CSU. The

CSU will be named using the domain prefix of the parent Domain. In the other/non-

owner Domain, the CSU is referenced in a Junction box with I/O/PRM naming

specific to the domain and function of the CSU. Within this Junction box, the signals

will be renamed to correspond to the naming convention of the referenced CSU

model:

Note: The configuration set of the CSU must be set to use “CSUCfgSetMR”. This

will ensure that the code produced for the CSU can be called from multiple domains.

Example:

The GDO_OrbGuid_CSU is used within both the GDO and GDE domains. The GDO

domain is chosen as the parent. The I/O/PRM naming is tied to the GDO Domain:

28

 GDO_OrbGuid_IN

 GDO_OrbGuid_OUT

 GDO_OrbGuid_PRM

For this CSU to be used in the GDE Domain, a separate CSU naming scheme must be

used for the Junction box. In this case, the new name is GDE_CMRaiseTargetGuid.

The I/O/PRM naming entering and leaving the Junction box is as follows:

 GDE_CMRTG_IN

 GDE_ CMRTG _OUT

 GDE_ CMRTG _PRM

Within the Junction box, the buses are renamed to match that of the GDO_OrbGuid

I/O/PRM.

 GDE_ CMRTG _IN renamed to GDO_OrbGuid_IN

 GDE_ CMRTG _OUT renamed to GDO_OrbGuid_OUT

 GDE_ CMRTG _PRM renamed to GDO_OrbGuid_PRM

This approach will ensure full CSU code reusability across domains.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.3.5.10 na_0010: Grouping data flows into signals

ID: Title na_0010: Grouping data flows into signals

29

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Vectors

The individual scalar signals composing a vector must have common functionality,

data types, dimensions and units. The most common example of a vector signal is

sensor or actuator data that is grouped into an array indexed by location. The output

of a Mux block must always be a vector. The inputs to a Mux block must always be

scalars.

All vectors must be Column vectors (nx1)

Buses

Signals that do not meet the vectorization criteria described above must only be

grouped into bus signals. Bus selector blocks may only be used with a bus signal

input; they must not be used to extract scalar signals from vector signals.

Examples

Some examples of vector signals include:

Vector type Size

Column vector [n 1]

Wheel speed vector [Number of wheels 1]

Cylinder vector [Number of cylinders 1]

Position vector based on 2-D

coordinates
[2 1]

Position vector based on 3-D

coordinates
[3 1]

Some examples of bus signals include:

Bus Type Elements

Sensor Bus

Force Vector [Fx; Fy; Fz]

Position

Wheel Speed Vector [Θlf ; Θrf ; Θlr ; Θrr]

Acceleration

Pressure

Controller Bus
Sensor Bus

Actuator Bus

Serial Data Bus Coolant Temperature

30

Engine Speed,

Passenger Door Open

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.5.11 na_0009: Entry versus propagation of signal labels

ID: Title na_0009: Entry versus propagation of signal labels

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites na_0008: Display of labels on signals

Description

If a label is present on a signal, the following rules define whether that label shall be

created there (entered directly on the signal) or propagated from its true source

(inherited from elsewhere in the model by using the „<‟ character).

1. Any displayed signal label must be entered for signals that:

a. Originate from an Inport at the Root (top) Level of a model

b. Originate from a basic block that performs a transformative operation

(For the purpose of interpreting this rule only, the Bus Creator block,

Mux block and Selector block shall be considered to be included among

the blocks that perform transformative operations.)

2. Any displayed signal label must be propagated for signals that:

a. Originate from an Inport block in a nested subsystem

Exception: If the nested subsystem is a library subsystem, a label may

be entered on the signal coming from the Inport to accommodate reuse

of the library block.

b. Originate from a basic block that performs a non-transformative

operation

c. Originate from a Subsystem or Stateflow chart block

Exception: If the connection originates from the output of a library

subsystem block instance, a new label may be entered on the signal to

accommodate reuse of the library block.

31

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.3.5.12 hyl_0311: Naming of signals passed through multiple subsystems

ID: Title hyl_0311: Naming of signals passed through multiple subsystems

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Names of inports/outports should not change between a subsystem and its parent, with

the allowable exception that the first layer of subsystems may change a top-level

in/out name (at the CSU root level). If such a change is performed, all first layer

subsystems shall use the same name change for consistency. [Example: A signal

called "pitchAngle" can be input, and changed to "pitch" on a 1st subsystem layer, but

you cannot change this name to "theta" in a lower subsystem.] This standard is

completed for convenience within the model.

Example:

Incorrect

32

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.5.13 na_0008: Display of labels on signals

ID: Title na_0008: Display of labels on signals

Priority Recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

33

Description

A label must be displayed on any signal originating from the following blocks:

 Inport block

 From block (block icon exception applies – see Note below)

 Subsystem block or Stateflow chart block (block icon exception applies)

 Bus Selector block (signal labels are automatic)

 Demux block

 Selector block

A label must be displayed on any signal connected to the following destination blocks

(directly or via a basic block that performs a non transformative operation):

 Outport block

 Goto block

 Bus Creator block

 Mux block

 Subsystem block

 Chart block

 Embedded Matlab Block

Note: Block icon exception (applicable only where called out above): If the signal label

is visible in the originating block icon display, the connected signal need not also have

the label displayed unless the signal label is needed elsewhere due to a destination-

based rule.

In addition, a label may be displayed on any other signal of interest to the user.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.5.14 db_0097: Position of labels for signals and buses

ID: Title db_0097: Position of labels for signals and buses

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The labels must be visually associated with the corresponding signal and not overlap

other labels, signals or blocks.

34

Labels should be located consistently below horizontal lines and close to the

corresponding source or destination block.

Correct:

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.3.5.15 hyl_0110: Branching line format

ID: Title hyl_0110: Branching line format

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

All branch lines shall have a "solder-joint" showing the connection point. Line

branches should be made as short as possible, avoid crossing other lines as much as

possible and not cut across blocks.

Examples of Incorrect Signal Line Usage

35

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.5.16 mdb_0032: Simulink signal appearance

ID: Title mdb_0032: Simulink signal appearance

Priority Strongly recommended

Scope ORION (modified MAAB db_0032)

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Signal lines

 Should not cross each other, if possible.

 Are drawn with right angles.

 Are not drawn one upon the other.

 Do not cross any blocks.

 Can be split into two or three sub lines at a single branching point

Correct

Correct

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.3.5.17 db_0081: Unconnected signals, block inputs and block outputs

ID: Title db_0081: Unconnected signals, block inputs and block outputs

Priority Mandatory

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description A system must not have any:

36

 Unconnected subsystem or basic block inputs.

 Unconnected subsystem or basic block outputs

 Unconnected signal lines

 An otherwise unconnected input should be connected to a ground block

 An otherwise unconnected output should be connected to a terminator block

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.3.5.18 jh_0061: Use of Parameters

ID: Title jh_0061: Use of Parameters

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Parameters may be accessed without connecting signal lines throughout the CSU

model. The following blocks make up the Parameter interface for the ORION Library:

 Param_Gain

 Param_Const

 Param_Goto

 Param_Visibility

 Param_From

The data on the parameter bus can be accessed by using the Param_Gain,

Param_Const, and Param_Goto blocks. The Param_Gain and Param_Const let you

select any data that is on the Parameter bus directly without using a bus selector and

connecting the signal line to the root level.

37

The example below shows how the parameter input bus should be used. It is

connected directly to a Goto block that is visible throughout the entire CSU model.

Note: the Param_Visibility block does not pass through model reference blocks or

atomic subsystems. To use data from the parameter bus in these systems, it must be

taken as an input using the Param_From block.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.3.6 Blocks

This section generically applies to individual blocks that are used in the models.

4.3.6.1 hyl_0302: Usable characters for Block Names

ID: Title hyl_0302: Usable characters for block names

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites jc_0201: Usable characters for Subsystem names

Description

All named blocks should conform to the following constraints:

FORM name:

 should not start with a number

 should not have blank spaces

 carriage returns are not allowed

38

ALLOWED

CHARACTERS

name:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 _

UNDERSCORES name:

 can use underscores to separate parts

 cannot have more than one consecutive underscore

 cannot start with an underscore

 cannot end with an underscore

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.3.6.2 hyl_0305: Block name uniqueness

ID: Title hyl_0305: Block name uniqueness

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Block names shall not be made unique by using case.

Example:

Incorect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

39

Last Change V2.1

4.3.6.3 hyl_0309: Block name usage

ID: Title hyl_0309: Block name usage

Priority Recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Block names may be left as the default name (i.e., "greaterThan"), but if a better name

is available, the user is encouraged to use it. It is desirable for the blocks to be named

with the intent rather than the value. For example, it would be better to name a

constant with the value of zero “initialSelection” than to name it “zero”.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.6.4 jh_0062: Constant Block Naming

ID: Title jh_0062: Constant Block Naming

Priority Strongly Recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Constant blocks should be named according to the data that they contain. This will

aid in the traceability of the autocode produced.

Note: this standard does not apply to the Param_Const block.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

40

4.3.6.5 jm_0002: Block resizing

ID: Title jm_0002: Block resizing

Priority Mandatory

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

All blocks in a model must be sized such that their icon is completely visible and

recognizable. In particular, any text displayed (e.g. tunable parameters, filenames,

equations) in the icon must be readable.

This guideline requires resizing of blocks with variable icons or blocks with a variable

number of inputs and outputs. In some cases it may not be practical or desirable to

resize the block icon of a subsystem block so that all of the input and output names

within it are readable. In such cases, the user may hide the names in the icon by using

a mask or by hiding the names in the subsystem associated with the icon. In this

approach, the signal lines coming into and out of the subsystem block should be

clearly labeled in close proximity to the block.

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.3.6.6 db_0142: Position of block names

ID: Title db_0142: Position of block names

Priority Strongly recommended

Scope MAAB

MATLAB All

41

Version

MA Check Yes

Prerequisites None

Description

If shown, the name of each block should be placed below the block.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.3.6.7 jc_0061: Display of block names

ID: Title jc_0061: Display of block names

Priority Recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

 The block name should be displayed when it provides descriptive information.

 The block name should not be displayed if the block function is known from its

appearance.

42

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.6.8 db_0140: Display of basic block parameters

ID: Title db_0140: Display of basic block parameters

Priority Recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Important parameters with values other than the block‟s default values should be

displayed. Many blocks within the ORION Library have important parameter values

displayed by default.

Note: The attribute string is one method to support this. The block annotation tab

allows the users to add the desired attribute information.

Correct

43

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.6.9 mdb_0141: Signal flow in Simulink models

ID: Title mdb_0141: Signal flow in Simulink models

Priority Strongly recommended

Scope ORION (modified MAAB db_0141)

MATLAB

Version
All

MA Check No

Prerequisites None

Description

 The signal flow in a model is from left to right.

 Exception: Feedback loops

 Sequential blocks or subsystems are arranged from left to right.

 Exception: Feedback loops

 Parallel blocks or subsystems are arranged from top to bottom.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.3.6.10 jc_0171: Maintaining signal flow when using Goto and From blocks

ID: Title jc_0171: Maintaining signal flow when using Goto and From blocks

Priority Strongly recommended

Scope MAAB

MATLAB All

Signal flow should be drawn from left to rightSignal flow should be drawn from left to right

44

Version

MA Check No

Prerequisites None

Description

 Visual depiction of signal flow must be maintained between subsystems.

 Use of Goto and From blocks is allowed provided that

 At least one signal line is used between connected subsystems.

 If the subsystems are connected both in a feed forward and feedback loop

then at least one signal line for each direction must be connected.

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.3.6.11 jc_0281: Naming of Trigger Port block and Enable Port block

ID: Title jc_0281: Naming of Trigger Port block and Enable Port block

Priority Strongly recommended

Scope J-MAAB

MATLAB All

45

Version

MA Check Yes

Prerequisites None

Description

For Trigger port blocks and Enable port blocks

 The block name should match the name of the signal triggering the

subsystem.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.3.7 Block Usage

The acceptable blocks that can be used for ORION GN&C models are restricted. The ORION

Library contains all of the blocks that are deemed useable in models.

4.3.7.1 hyl_0201: Use of standard library blocks only

ID: Title hyl_0201: Use of standard library blocks only

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Only compliant Library blocks from the Orion GN&C Algorithm Library should be

used in the models. If non-compliant blocks are used, it shall have foreground color

of red (Colorspec RGB value = [1.000000, 0.501961, 0.501961])

The ORION library contains a section of non-compliant blocks in the “Prototype

Blocks” section. These blocks are already colored red. The purpose of this set of

blocks are for development only and should not be included in the final models

The Domain Level Blocks section contains blocks that should only exists at the

domain level and are prohibited at the CSU level.

46

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.7.2 jh_0101: Use of Right-Handed Quaternions only

ID: Title jh_0101: Use of Right-Handed Quaternions Only

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Orion GN&C models shall only use right-handed quaternions. The ORION GN&C

Library does not support the use of left-handed quaternions.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.3.7.3 na_0003: Simple logical expressions in If Condition block

ID: Title na_0003: Simple logical expressions in If Condition block

Priority Mandatory

47

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

A logical expression may be implemented within an If Condition block instead of

building it up with logical operation blocks if the expression contains two or fewer

primary expressions. All inputs to an If Condition block must be the same data type.

A primary expression is defined here to be one of the following:

 An input

 A constant

 A constant parameter

 A parenthesized expression containing no operators except zero or one

instances of the following operators: < , <= , > , >= , ~=, ==, ~ . (See below

for examples)

Exception:

A logical expression may contain more than two primary expressions if both of the

following are true:

 The primary expressions are all inputs

 Only one type of logical operator is present

Examples of acceptable exceptions:

 u1 | u2 | u3 | u4 | u5

 u1 & u2 & u3 & u4

Examples of primary expressions include:

 u1

 5

 K

 (u1 > 0)

 (u1 <= G)

 (u1 > U2)

 (~u1)

Examples of acceptable logical expressions include:

 u1 | u2

 (u1 > 0) & (u1 < 20)

 (u1 > 0) & (u2 < u3)

 (u1 > 0) & (~u2)

Examples of unacceptable logical expressions include:

48

 u1 & u2 | u3 (too many primary expressions)

 u1 & (u2 | u3) (unacceptable operator within primary

expression)

 (u1 > 0) & (u1 < 20) & (u2 > 5) (too many primary expressions that are

not inputs)

 (u1 > 0) & ((2*u2) > 6) (unacceptable operator within

primary expression)

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.7.4 na_0002: Appropriate implementation of fundamental logical and numerical

operations

ID: Title
na_0002: Appropriate implementation of fundamental logical and numerical

operations

Priority Mandatory

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

 Blocks that are intended to perform numerical operations must not be used to

perform logical operations.

Incorrect

 A logical output should never be directly connected to the input of blocks

that operate on numerical inputs.

 The result of a logical expression fragment should never be operated on by a

numerical operator.

Incorrect

49

 Blocks that are intended to perform logical operations must not be used to

perform numerical operations.

 A numerical output should never be connected to the input of blocks that

operate on logical inputs.

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.3.7.5 na_0011: Scope of Goto and From blocks

ID: Title na_0011: Scope of Goto and From blocks

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description
For signal flows the following rules apply:

 From and Goto blocks must use local scope.

50

Note: This rule does not apply to the Parameter Goto Block for passing static data

throughout a CSU.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.3.7.6 jc_0141: Use of the Switch block

ID: Title jc_0141: Use of the Switch block

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description
The block parameter “Criteria for passing first input” should be set to u2~=0.

51

The block parameter “Criteria for passing first input” must not be set to u2>Threshold

for R13 versions of MATLAB.

The logic for the switch block should be defined on the same level as the switch block

itself.

Correct

Incorrect

Note: This criteria is not available to change in the ORION Library. The criteria is

locked to “u2 ~= 0”.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

52

4.3.7.7 hyl_0207: Limiting input to multiport switches

ID: Title hyl_0207: Limiting input to multiport switches

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Logic input to Multiport Switch Blocks shall never be less than one, or greater than

the number of switch ports on the block. The user ensures this by the model-design

or upstream limiting.

Note: One based indexing [1, 2, 3,…] is used for Matlab/Simulink

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.7.8 jc_0121: Use of the Sum block

ID: Title jc_0121: Use of the Sum block

Priority Recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Sum blocks should:

 Use the “rectangular” shape.

 Be sized so that the input signals do not overlap.

Correct Incorrect

53

 The round shape can be used in feedback loops.

 There should be no more than 3 inputs.

 The inputs may be positioned at 90,180,270 degrees.

 The output should be positioned at 0 degrees.

Correct

Incorrect

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

54

4.3.7.9 jc_0131: Use of Relational Operator block

ID: Title jc_0131: Use of Relational Operator block

Priority Recommended

Scope J-MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

When the relational operator is used to compare a signal to a constant value the

constant input should be the second (lower) input.

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.3.7.10 hyl_0211: Prohibit use of test points

ID: Title hyl_0211: Prohibit use of test points

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Test points shall not be used in the final models. However, the use of test points can

be used during development for testing purposes.

The configuration set used by the ORION GN&C FSW models ignores test points

when autocode is produced so there is not affect to code generation.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

55

4.3.7.11 jh_0109: Merge Blocks

ID: Title jh_0109: Merge Blocks

Priority Strongly Recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Care must be taken when using the Merge Block. There are a few rules of thumb

that must be followed when using merge blocks:

 The signals entering a merge block must not branch off to any other block. The

merge block must be the signals‟ only destination

 When using Merge Blocks with buses:

o All buses must be absolutely identical. The number of elements, element

names, element order, element data type, and element size must match

exactly between all buses being merged

o All buses must be of the same virtuality (i.e. all non-virtual or all virtual).

It is recommended to use non-virtual buses and create a bus object for the

buses being merged. This is the most fail safe way to prevent

inconsistencies.

o All bus lines entering a merge block must not branch off to any other

block. The merge block must be the bus lines only destination

o Do not use the Signal_Conversion block on signals feeding Merge

blocks. The Signal_Conversion block may create an intermediate

variable that is assigned every cycle. This may force the Merge block to

use the data from that signal, regardless of the state of the other signals.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.1

4.3.7.12 mjc_0111: Direction of Subsystem

ID: Title mjc_0111: Direction of Subsystem

Priority Strongly recommended

Scope ORION (modified J-MAAB jc_0111)

MATLAB

Version
All

MA Check No

56

Prerequisites None

Description

Subsystems must not be reversed except when used in feedback loops.

Correct

Correct

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.3.8 Block Parameters

4.3.8.1 db_0112: Indexing

ID: Title db_0112: Indexing

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

One based indexing [1, 2, 3,…] is used for

 MATLAB

 Workspace variables and structures

 Local variables of m-functions

 Global variables

 Simulink

 Signal vectors and matrices

57

 Parameter vectors and matrices

 M-coded S-Function input and output signal vectors and matrices

 M-coded S-Function parameter vectors and matrices

 M-coded S-Function local variables

Zero based Indexing [0, 1, 2, ...] is used for

 Simulink

 C-coded S-Function input and output signal vectors and matrices

 C-coded S-Function input parameters

 C-coded S-Function parameter vectors and matrices

 C-coded S-Function local variables

 Stateflow

 Custom c-code variables and structures

 Buses

 Input and output signal vectors and matrices

 Parameter vectors and matrices

 Local variables

 C-Code

 Local variables and structures

 Global variables

Model explorer view of Stateflow chart for setting the First Index

58

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.3

4.3.8.2 db_0110: Tunable parameters in basic blocks

ID: Title db_0110: Tunable parameters in basic blocks

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

59

Prerequisites None

Description

All tunable parameters must be fed into the model through the Parameter input bus.

Tunable parameters must not be accessed from the Matlab workspace via constant

blocks, gain blocks, and other blocks that have parameter inputs.

This standard ensures that the autocode will retain the parameter structure and

tunability.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.9 Subsystems

4.3.9.1 jc_0201: Usable Characters for Subsystem Names

ID: Title jc_0201: Usable characters for Subsystem names

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

The names of all Subsystem blocks should conform to the following constraints:

FORM name:

 should not start with a number

 should not have blank spaces

 carriage returns are not allowed

ALLOWED

CHARACTERS

name:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 _

UNDERSCORES name:

 can use underscores to separate parts

 cannot have more than one consecutive underscore

 cannot start with an underscore

 cannot end with an underscore

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

60

4.3.9.2 bn_0001 Subsystem name length limit

ID: Title bn_0001: Subsystem Name Length Limit

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites jc_0201: Usable characters for Subsystem names

Description

The names of all Subsystem blocks must be unique. Compiler limits must be

observed when creating subsystem names that are used in code or system filenames.

32 characters is the maximum limit

Example:

Subroutine_Function_Algortihm_Example becomes

Subroutine_Function_Algortihm_Ex

This_is_a_Really_Long_Subsystem_Name becomes

A_Really_Long_Subsystem_Name

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.9.3 hyl_0307: Use of subsystem name

ID: Title hyl_0307: Use of subsystem name

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

No block shall be named "subsystem" (or "subsystem1" "subSystem1,” etc.) or have

“subsystem” in the name.

Example:

Incorrect

61

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.9.4 db_0144: Use of Subsystems

ID: Title db_0144: Use of Subsystems

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Blocks in a Simulink diagram should be grouped together into subsystems based

upon a functional decomposition of the algorithm, or portion thereof, represented in

the diagram.

Grouping blocks into subsystems primarily for the purpose of saving space in the

diagram should be avoided. Each subsystem in the diagram should represent a unit

of functionality required to accomplish the purpose of the model or sub model.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.2

4.3.9.5 jh_0049: Use of Model References or Reusable Subsystems

ID: Title jh_0049: Use of Model References or Reusable Subsystems

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

62

Prerequisites jh_0202: Testable Unit

Description

Only subsystems that reside in the ORION Library should be set to be a “Reusable

Function”. This setting is shown in the Subsystem Parameter Dialog window below.

If a complex subsystem within a CSU is used multiple times it may be converted into

a standalone model (.mdl) and referenced via the model reference block. This will

ensure reusability of the autocode. Refer to jh_0202: Testable Units for a further

description of how do decompose a model using Model Reference.

eML functions may not be shared between CSUs or Model References directly. If an

eML function is used by multiple models, the eML function should be wrapped in a

Simulink model and called as a Model Reference that contains an eML block that

calls the function.

Rationale Readability Verification and Validation

63

 Workflow

 Simulation

 Code Generation

Last Change V1.1

4.3.9.6 jh_0050: Model References Simulation Mode

ID: Title jh_0050: Model References Simulation Mode

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites none

Description

Models that contain model reference blocks should have the blocks set to be in

“Accelerated” Model. This setting can be changed by right-clicking on a model

reference block, selecting ModelReference Parameters, and then selecting

“Accelerator” for the Simulation mode.

See the GUI below:

64

The Simulation mode for a model reference block can be determined by the block

graphic. Model Reference blocks that are in “Accelerator” mode have filled in black

triangles on the corners of the block.

65

Model Reference Block – Accelerated Mode

Model Reference blocks that are in “Normal” mode have empty triangles on the

corners of the block.

Model Reference Block – Normal Mode

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.3.9.7 db_0146: Triggered, enabled, conditional Subsystems

ID: Title db_0146: Triggered, enabled, conditional Subsystems

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

The blocks that define subsystems as either conditional or iterative should be located

at a consistent location at the top of the subsystem diagram. These are:

 Function call

 Enabled

 Triggered

 If / Else Action

66

Exception: Only trigger blocks can be used for model reference models at the root

level. These trigger blocks can only be set to “function call” and only one is allowed

at the root level.

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.9.8 jph_0010: Use of Masks

ID: Title jph_0010: Use of Masks

Priority Recommended

Scope ORION

67

MATLAB

Version
All

MA Check No

Prerequisites

Description

The use of “Masks” can greatly increase the readability of a Simulink model by

replacing the generic subsystem appearance with an icon that better illustrates the

underlying math. Masks are only permitted for Subsystem blocks and blocks in the

ORION Library and shall not be used anywhere else in a CSU model.

When creating Masks for subsystems, only the “Icon & Ports” tab may be modified in

the Mask Editor.

Mask Editor

No entries shall be made in the “Parameters”, “Initialization”, or “Documentation”

tabs of the Mask Editor.

Mask “dialogs” are not permitted for non-ORION Library blocks. Mask dialogs are

automatically created by Simulink when parameters are added to a masked

Subsystem, therefore, adding parameters to a mask is not allowed.

All inports and outports of a subsystem shall be labeled with their symbolic

representation or underlying port name when masking a subsystem.

See the Appendix for “Subsystem Masking Methods and Guidelines” for more

68

information on how to create Masks.

Example of proper use of a Subsystem Mask:

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.3.9.9 hyl_0308: Use of reference model name

ID: Title hyl_0308: Use of reference model name

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

No block shall be named “referenced model” (or “referenced model1,”

referencedModel1,” etc.).

Example

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

69

Last Change V2.0

4.3.10 Subsystem Patterns

The following rules illustrate sample patterns used in Simulink diagrams. As such they would

normally be part of a much larger Simulink diagram.

4.3.10.1 na_0012: Use of Switch vs. Case vs. If-Then-Else Action Subsystem

ID: Title na_0012: Use of Switch vs. Case vs. If-Then-Else Action Subsystem

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The Switch block:

 Should be used for modeling simple if-then-else structures if the associated

then and else actions involve only the assignment of constant values.

The if-then-else action subsystem construct:

 Should be used for modeling if-then-else structures if the associated then

and/or else actions require complicated computations. This will maximize

simulation efficiency and the efficiency of generated code (Note that even a

basic block, for example a table look-up, can require fairly complicated

computations.)

 Must be used for modeling if-then-else structures if the purpose of the

construct is to avoid an undesirable numerical computation, such as division

by zero.

70

 Should be used for modeling if-then-else structures if the explicit or implied

then or the else action is just to hold the associated output value(s).

In other cases, the degree of complexity of the then and/or else action computations

and the intelligence of the Simulink simulation and code generation engines will

determine the appropriate construct.

These statements also apply to more complicated nested and cascaded if-then-else

structures and case structure implementations.

Generally, the If/Then block, Case block, and Switch Simulink blocks can be used to

create the same logic functionality in a Simulink model. However, the autocode of

these may slightly differ. Here are some Example block constructs and the resulting

autocode to illustrate the differences. Pay special attention to the last example

involving a switch blocks and model reference blocks.

If/Then Block Example:

Resulting Autocode:

 if (IfThen_test_U.int_j == 1U) {
 IfThen_test_B.Merge3 = 333.0 * IfThen_test_U.data;
 } else if (IfThen_test_U.int_j == 2U) {
 IfThen_test_B.Merge3 = 444.0 * IfThen_test_U.data;
 } else {
 if (IfThen_test_U.int_j == 3U) {
 IfThen_test_B.Merge3 = 555.0 * IfThen_test_U.data;
 }
 }

Case Block Example:

Resulting Autocode:

71

 switch (Case_test_U.int_o) {
 case 1:
 Case_test_B.Merge3 = 333.0 * Case_test_U.data;
 break;

 case 2:
 Case_test_B.Merge3 = 444.0 * Case_test_U.data;
 break;

 case 3:
 Case_test_B.Merge3 = 555.0 * Case_test_U.data;
 break;
 }

Switch Block Example:

Resulting Autocode:

 switch (Switch_test_U.int_j) {
 case 1:
 Switch_test_Y.Outport1 = 333.0 * Switch_test_U.data;
 break;

 case 2:
 Switch_test_Y.Outport1 = 444.0 * Switch_test_U.data;
 break;

 default:
 Switch_test_Y.Outport1 = 555.0 * Switch_test_U.data;
 break;
 }

The switch case will autocode similarly to the If/Then or Case constructs with one

exception. If a subsystem related to a Switch block contains a Model Reference

block, this Model reference block will not be called from within the case statement.

The call to the model reference will occur on each pass, regardless of the outcome of

the logic. Only the data will be assigned within the case statement. This type of

construct should be avoided to prevent unnecessary computations.

Switch Block with Model Reference Example:

72

Resulting Autocode:

 mr_Mref(&Switch_test_U.data, &rtb_Model_Reference2);

 mr_Mref(&Switch_test_U.data, &rtb_Model_Reference3);

 mr_Mref(&Switch_test_U.data, &rtb_Model_Reference4);

 switch (Switch_test_U.int_j) {
 case 1:
 Switch_test_Y.Outport3 = rtb_Model_Reference2;
 break;

 case 2:
 Switch_test_Y.Outport3 = rtb_Model_Reference3;
 break;

 default:
 Switch_test_Y.Outport3 = rtb_Model_Reference4;
 break;
 }

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.0

4.3.10.2 db_0114: Simulink patterns for If-then-else-if constructs

ID: Title db_0114: Simulink patterns for If-then-else-if constructs

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The following patterns should be used for If-then-else-if constructs within Simulink:

Equivalent Functionality Simulink pattern

73

IF THEN ELSE IF with

switch blocks

if (If_Condition) {
output_signal = If_Value;
}
else if (Else_If_Condition) {
output_signal = Else_If_Value;
}
else {
output_signal = Else_Value;
}

IF THEN ELSE IF

with if/then/else

subsystems:
if(Fault_1_Active &
Fault_2_Active)
{
 ErrMsg = SaftyCrit;
}
else if (Fault_1_Active |
Fault_2_Active)

{
 ErrMsg = DriveWarn;
}
else
{
 ErrMsg = NoFaults;
}

A maximum of 10 cases should be used with the pattern shown above. If there are

more than 10 cases, eML or Stateflow should be used to implement the logic.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.10.3 db_0115: Simulink patterns for case constructs

ID: Title db_0115: Simulink patterns for case constructs

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

74

Prerequisites None

Description

The following patterns are used for case constructs within Simulink:

Equivalent Functionality Simulink Pattern

Case

With switch case block

switch (PRNDL_Enum)
{
case 1
 TqEstimate = ParkV;
 break;
case 2
 TqEstimae = RevV;
 break;
default
 TqEstimate = NeutralV;
 break;

}

CASE

with multiport switch and

subsystems:

output_version1 =
function_version1(input_signal);
output_version2 =
function_version2(input_signal);
output_version3 =
function_version3(input_signal);
output_version4 =
function_version4(input_signal);

switch (selection) {
case 1:
output_signal = output_version1;
break;
case 2:
output_signal = output_version2;
break;
case 3:
output_signal = output_version3;
break;
default:
output_signal = output_version4;
}

75

CASE

with multiport switch and

enabled subsystems:

switch (selection) {
case 1:
output_version1 =
function_version1(input_signal);
output_signal = output_version1;
break;
case 2:
output_version2 =
function_version2(input_signal);
output_signal = output_version2;
break;
case 3:
output_version3 =
function_version3(input_signal);
output_signal = output_version3;
break;
default:
output_version4 =
function_version4(input_signal);
output_signal = output_version4;
}

A maximum of 10 cases should be used with the pattern shown above. If there are

more than 10 cases, eML or Stateflow should be used to implement the logic.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.10.4 bn_0003: Use of If-Then-Else Action Subsystem to Replace Multiple

Switches

ID: Title bn_0003: Use of If-Then-Else Action Subsystem to Replace Multiple Switches

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites
na_0012: Use of Switch vs. If-Then-Else Action Subsystem

db_0114: Simulink patterns for If-then-else-if constructs

Description

The use of multiple switches must be appropriate to the degree of complexity of the

then and/or else action computations and the intelligence of the Simulink simulation

and code generation engines. A switch construct of more than 3 switches (1 IF path,

2 ELSE-IF paths, and 1 ELSE) must use an if-then construct for readability.

76

A 5 switch construct such as this. May be fine for simple computations.

But, the structure is more readable using if-then block and actions subsystems.

77

These statements also apply to more complicated nested and cascaded if-then-else

structures and case structure implementations.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.3.10.5 db_0116: Simulink patterns for logical constructs with logical blocks

ID: Title db_0116: Simulink patterns for logical constructs with logical blocks

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

78

Description

The following patterns are used for logical combinations within Simulink:

Equivalent Functionality Simulink pattern

Combination of logical signals:

conjunctive

Combination of logical signals:

disjunctive

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.1

4.3.10.6 db_0117: Simulink patterns for vector signals

ID: Title db_0117: Simulink patterns for vector signals

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description The following patterns are used for vector signals within Simulink:

79

Equivalent Functionality Simulink Pattern

Vector loop:

for (i=0; i>input_vector_size; i++)

{

output_vector(i) = input_vector(i)

* tunable_parameter_value;

}

Vector loop:

for (i=0; i>input_vector_size; i++)

{

output_vector(i) = input_vector(i)

* tunable_parameter_vector(i);

}

Vector loop:

output_signal = 1;

for (i=0; i>input_vector_size; i++)

{

output_signal = output_signal *

input_vector(i);

}

Vector loop:

output_signal = 1;

for (i=0; i>input_vector_size; i++)

{

output_signal = output_signal /

input_vector(i);

}

Vector loop:

for (i=0; i>input_vector_size; i++)

{

output_vector(i) = input_vector(i)

+ tunable_parameter_value;

}

Vector loop:

for (i=0; i>input_vector_size; i++)

{

output_vector(i) = input_vector(i)

+ tunable_parameter_vector(i);

}

Vector loop:

output_signal = 0;

for (i=0; i>input_vector_size; i++)

{

output_signal = output_signal +

input_vector(i);

80

}

Vector loop:

output_signal = 0;

for (i=0; i>input_vector_size; i++)

{

output_signal = output_signal -

input_vector(i);

}

Minimum or maximum of a signal

or a vector over time:

Change event of a signal or a

vector:

Rationale

 Readabilit

y

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.3.10.7 jc_0351: Methods of initialization

ID: Title jc_0351: Methods of initialization

Priority Recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites db_0140: Display of block parameters

Description Simple initialization:

81

 Blocks such as the Unit Delay, that have an initial value field can be used to

set simple initial values.

 To determine if the initial value needs to be displayed see db_0140.

Example

Initialization that requires computation:

For complex initializations the following rules hold.

 The initialization should be performed in a separate subsystem.

 The initialization subsystem should have a name that indicates that

initialization is performed by the subsystem.

Complex initializations can either be done at a local level (Example A) or at a global

level (Example B) or a combination.

Example A

Example B

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

82

4.3.11 Enumerations

4.3.11.1 dm_0002: Enumerated Types Usage

ID: Title dm_0002: Enumerated Types Usage

Priority Mandatory

Scope Orion

MATLAB

Version
2010B and Later

MA Check No

Prerequisites None

Description

Enumeration types shall be used instead of integer types (and constants) to select

from a limitied series of choices (SDP OCS Rule 137). This includes

implementation of enumerated types throughout the code.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.11.2 dm_0003: Enumerated Types Header Files

ID: Title dm_0003: Enumerated Types Header Files

Priority Mandatory

Scope Orion

MATLAB

Version
2010B and Later

MA Check Yes

Prerequisites None

Description

When defining an enumerated type within MATLAB, the “getHeaderFile” method

must be declared such that the return value follows the format of:
‘SmlkEnum_<EnumType>.h’

This will ensure that the RTW Auto-Coder completes a #include of this file instead

of generating it‟s only declaration within the <Model Reference>_types.h file.

Additionally, this header file must be created (using generate_enum_header.m) to

be consistent with the Orion Standard of generating headers files separate from

RTW to facilitate communication of interfaces with Rhapsody.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

83

4.3.11.3 dm_0004: Enumerated Types RTW Settings

ID: Title dm_0004: Enumerated Types RTW Settings

Priority Mandatory

Scope Orion

MATLAB

Version
2010B and Later

MA Check Yes

Prerequisites None

Description

When defining an enumerated type within MATLAB, the

“addClassNameToEnumNames” method must be declared such that the return value

is “true”. This will cause the RTW auto-coder to pre-pend the enumerations with

the type definition to prevent name conflicts with identifiers in Real-Time

Workshop generated code.

Example:

MATLAB Declaration:
enumeration
 IDLE(1)
 AUTO_ENTRY_CM_RCS_CNTRL(2)
 AUTO_TOUCHDOWN_ROLL_CNTRL(4)
end

function retVal = addClassNameToEnumNames()
 retVal = true;
end

Generated Header File Declaration:
typedef enum { /* CNC_ModeEnum */
 CNC_ModeEnum_IDLE = 1,
 CNC_ModeEnum_AUTO_ENTRY_CM_RCS_CNTRL = 2,
 CNC_ModeEnum_AUTO_TOUCHDOWN_ROLL_CNTRL = 4

} CNC_ModeEnum;

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.11.4 dm_0005: Enumerated Types Description

ID: Title dm_0005: Enumerated Types Description

Priority Recommended

Scope Orion

MATLAB 2010B and Later

84

Version

MA Check Yes

Prerequisites None

Description

When defining an enumerated type within MATLAB, the “getDescription” method

should return a value that enables the parsing of both the typedef and element

descriptions. The format shall consist of the following:

 <enumeration1>: <enumeration1 description> \n

 <enumeration2>: <enumeration2 description> \n

 etc

Example:
function retVal = getDescription()
 % GETDESCRIPTION Optional string to describe enumerations
 retVal = sprintf([...
 'CNC_ModeEnum: This Enumeration describes the Modes used by

the CM Controls (CNC) Domain\n',...
 'IDLE: No Domain CSUs are called\n',...
 'AUTO_ENTRY_CM_RCS_CNTRL: The CM RCS Control Law CSU

generetes commands for CM Thruster Logic\n',...
 'AUTO_TOUCHDOWN_ROLL_CNTRL: The CM Roll Control CSU

generated commands for CM Thruster Logic\n'...
]);
end

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.3.11.5 jr_0003: Enumeration Name Convention

ID: Title jr_0003: Enumeration Name Convention

Priority Recommended

Scope Orion

MATLAB

Version
2010B and Later

MA Check Yes

Prerequisites None

Description

Enumeration names should be defined using all CAPS with names separated by

underscores. Enumerated typedef should follow the same naming convention

outlined Standard dm_0001.

Examples:
classdef(Enumeration) CNC_ModeEnum < Simulink.IntEnumType
 enumeration
 IDLE(1)
 AUTO_ENTRY_CM_RCS_CNTRL(2)
 AUTO_TOUCHDOWN_ROLL_CNTRL(4)

85

 end
end

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.4 Model Architecture

Basic Blocks

This document uses the term “Basic Blocks” to refer to blocks from the ORION Library; examples

of basic blocks are shown below.

4.4.1 Simulink®, eML, and Stateflow® Partitioning

4.4.1.1 jh_0202: Testable Units

ID: Title jh_0202: Testable Unit

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites

Description

Testable Units

There are two forms of testable units. In Simulink, a testable unit is an individual

model or eML function that can be executed separately without modification. For

the autocode, a testable unit is simply a function. Ideally, each testable unit in

Simulink will translate into a single testable unit in the autocode. This approach

aids in the management of complexity and maximizes unit test reuse between model

and autocode. Testable units should be limited in functional scope to one or a few

related system functions.

86

Individually Testable Components in Simulink

 Individual Simulink Models (CSUs, Model References(MR) aka “dot-mdl”

files)

 Externally saved Matlab Functions (“dot-m” files)

Non-Individually Testable Components in Simulink

 Subsystems (including atomic)

 Stateflow charts

 locally defined embedded matlab functions (those that exist only in the

model, not as external *.m files)

The illustration below shows the testable and non-testable components of a

Simulink model.

Furthermore, the resulting autocode for a testable component will be a single stand-

alone function. The illustration below shows where the resulting code is placed for

units in a model.

87

As seen by the above illustration:

 The MRB will autocode into a separate cpp file with an individually testable

function. Each .mdl file will generate a separate .cpp.

 Externally defined eML functions (that include the eml.inline(„never‟);

declaration) will autocode into the main cpp file as a separate function that is

individually testable

 All other blocks will be “inlined” into the main cpp file as a part of the main

cpp function.

Note: there are some ORION library utility functions and atomic subsystems/charts

that are configured to autocode as separate functions.

Important Note: All Externally defined *.m files (“dot-m”) are Testable units and

should be represented as a single function in the autocode. An Embedded Matlab

function will only be autocoded as a separate function if the following declaration is

present after the function call:

eml.inline('never');

For example:

function [att_out] = NVA_EKF_update_ref_att(phi, att_in)
%#eml
eml.inline('never');

88

…

…

…

A further description of the ORION Definition of a “Testable Unit” can be found

within the “GNC Model Development Cyclomatic Complexity Guidelines” memo

(Doc #: CEV-GN&C-11-014).

Link on ICE

https://ice.exploration.nasa.gov/Windchill/netmarkets/jsp/document/view.jsp?oid=d

ocument~wt.doc.WTDocument%3A2240757958&u8=1

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.4.1.2 na_0006: Guidelines for mixed use of Simulink and Stateflow

ID: Title na_0006: Guidelines for mixed use of Simulink and Stateflow

Priority Recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites none

Description

The choice of whether to use Simulink or Stateflow to model a given portion of the

control algorithm functionality should be driven by the nature of the behavior being

modeled.

 If the function primarily involves complicated logical operations, Stateflow

should be used.

 Stateflow should be used to implement modal logic – where the

control function to be performed at the current time depends on a

combination of past and present logical conditions.
 If the function primarily involves numerical operations, Simulink or

Embedded Matlab should be used.

Specifics:

 If the primary nature of the function is logical, but some simple numerical

calculations are done to support the logic, it is preferable to implement the

simple numerical functions using the Stateflow action language.

89

 If the primary nature of the function is numerical, but some simple logical

operations are done to support the arithmetic, it is preferable to implement

the simple logical functions within Simulink.

 If the primary nature of the function is logical, and some complicated

numerical calculations must be done to support the logic, a Simulink

subsystem should be used to implement the numerical calculations. Stateflow

should invoke the execution of this subsystem using a function-call.

Embedded

simple

logic operations

Embedded

simple

math operation

90

91

 Stateflow should be used to implement modal logic – where the control

function to be performed at the current time depends on a combination of

past and present logical conditions. (If there is a need to store the result

of a logical condition test in Simulink, for example, by storing a flag, this is

one indicator of the presence of modal logic – that would be better modeled

in Stateflow.)

Incorrect

92

Correct

93

 Simulink should be used to implement numerical expressions containing

continuously-valued states, e.g., difference equations, integrals, derivatives,

and filters.

Refer to the “Modeling Guidelines Chart” in the Appendix for a table detailing the

proper algorithm type implementation for the Simulink/Stateflow/eML tools.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.4.1.3 na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines

ID: Title na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines

Priority Recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites na_0006: Guidelines for Mixed use of Simulink and Stateflow

Description

Within Stateflow, the choice of whether to utilize a flow chart or a state chart to

model a given portion of the control algorithm functionality should be driven by the

nature of the behavior being modeled.

 If the primary nature of the function segment is to calculate modes of

operation or discrete-valued states, then state charts should be used. Some

examples are a diagnostic model with pass, fail, abort, and conflict states, or a

model that calculates different modes of operation for a control algorithm.

 If the primary nature of the function segment involves if-then-else statements,

then flowcharts or truth tables should be used.

Specifics:

 If the primary nature of the function segment is to calculate modes or states,

but if-then-else statements are required, it is recommended that a flow chart

be added to a state within the state chart. (refer to 7.5 Flowchart Patterns)

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.4.1.4 im_0001: Guidelines for mixed use of Simulink and eML

ID: Title im_0001: Guidelines for mixed use of Simulink and eML

94

Priority Recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The choice of whether to use Simulink or eML to model a given portion of the

control algorithm functionality should be driven by the nature of the behavior being

modeled.

There is no hard and fast rule for when eML should be used versus Simulink except

for modeling concepts that are difficult to implement in a graphical environment (e.g.

iterative loops). eML could be used to simplify a cluttered diagram by implementing

low level math.

Need to avoid a straight c to .m conversion activity by the GN&C developers.

PA-1 Example:

• NAV100HzCalculations represents one CSU within the 100 Hz rate group within

the NAV domain

• There are additional CSUs at the 100 Hz rate group layer

• Note that data stores usage is not in the current standards and guidelines

document

95

NAV100Hz Calculations is decomposed into “AttitudeRates” and “Acceleration”

An eML block performs the 8

th
 order filtering function

• NAV50HzCalculations represents a second CSU within the 100 Hz rate group

within the NAV domain

• Simple Stateflow chart is being used to execute drogue detection logic

• Note that some implementation aspects (such as NAV mode in this example) is

being moved a level above the CSU

96

DrogueChuteJettisonLogic is implemented as Simulink blocks

Refer to the “Modeling Guidelines Chart” in the Appendix for a table detailing the

proper algorithm type implementation for the Simulink/Stateflow/eML tools.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.2

4.4.1.5 jh_0200: Guidelines for Managing Model Complexity

ID: Title jh_0200: Guidelines for Managing Model Complexity

Priority Mandatory

97

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites none

Description

The developer shall manage the model complexity in accordance with the “GNC

Model Development Cyclomatic Complexity Guidelines” memo (Doc #: CEV-

GN&C-11-014).

Link on ICE:

https://ice.exploration.nasa.gov/confluence/pages/worddav/preview.action?fileName

=ErrorHandlingGuidance.docx&pageId=106041166

 Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.4.1.6 ek_0010: Simulink algorithm States recommendations

ID: Title ek_0010: Matlab/Simulink algorithm States recommendations

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Algorithm states may be implemented using 1 of 3 possible options :

 ‘Standard’ Simulink
o Do not use the “Data Store Memory” blocks
o Recommend the use of “unit delay” blocks

 Unit delay blocks visualizes the feedback loop w/ states

 A caution is that it can also make the diagram harder to read
 multiple (independent) „states‟ structures may be passed back in the

feedback path, if necessary.

 Facilitates reset capability
o “unit delay” blocks will most likely require restart a capability – use block with

restart trigger & external ICs
o External states will be loaded from the “Parameter Bus”

 CSU will be a model reference block – parameter bus will be passed
by reference.

o Init trigger condition will come as an input on the “Input Bus”
 Multiple initialization types may be implemented through the use of

different initialization inputs and/or initialization enumeration(s)
o Forces the creation of Simulink „State‟ buses, as well as Inputs / Outputs /

Parameters

https://ice.exploration.nasa.gov/confluence/pages/worddav/preview.action?fileName=ErrorHandlingGuidance.docx&pageId=106041166
https://ice.exploration.nasa.gov/confluence/pages/worddav/preview.action?fileName=ErrorHandlingGuidance.docx&pageId=106041166

98

 Embedded Matlab
o 1) Recommend use of persistent (i.e., „static‟) data structure(s) at eML block

level, but not below
 Persistent structures should not be used below the eML block level

to keep external m-functions reentrant.
 Pass states & parameters via structures into any m-file subfunctions

which require them
 Keeping persistent structures at eML block level permits different

copies of the eML block to be called from different locations.
 Using this method, algorithm developers will not need to create

Simulink State buses, since the states can be represented internally
to the block.

o 2) another option restricts the use of „persistent‟ data structs
 States would be handled as described above using the unit delay

block
 Does not alleviate any of the concerns/issues with states internal to

an eML block described in 1)
 Requires creation of the states bus

 Stateflow
o Useful for some algorithms which require internal Moding
o Should capture the logic of an algorithm only –

 Math is reserved for external subsystems or eML functions.
 Cannot easily visualize data flow within Stateflow, only logical flow.

o Stateflow can be interfaced directly to eML
o Stateflow can be used to trigger subsystems
o Internal States may be required in a Stateflow model (e.g., a persistence

counters, latching logic, etc…).
 May also be handled using external unit delay blocks as described

above – this option requires creating state buses.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.4.2 Subsystem Hierarchies

4.4.2.1 mdb_0143: Similar block types on the model levels

ID: Title mdb_0143: Similar block types on the model levels

Priority Recommended

Scope ORION (modified NA-MAAB db_0143)

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description
Every level of a model must be designed with building blocks of the same type. (i.e.

only subsystems or only basic blocks).

99

Blocks which can be placed on every model level:

Inport

Outport

Enable (not on highest model

level)

Trigger (not on highest model

level)

Mux

Demux

Bus Selector

Bus Creator

Selector

Ground

Terminator

From

Goto

Switch

Multiport Switch

Merge

Unit Delay

Rate Transition

Type Conversion

Data Store Memory

If block

Case block

Note: Trigger and Enable blocks cannot be placed at

the root level. Enable blocks cannot be placed at the

top level of Model Reference Systems

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.4.3 ORION GN&C Model Architecture Decomposition

This section is specific to the architecture used in the ORION GN&C models.

4.4.3.1 im_0015: ORION GN&C Model Architecture

ID: Title im_0015: ORION GN&C Model Architecture

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description • The model hierarchy should correspond to the functional structure of the overall

100

GN&C system.

• Model references shall be used for each domain and each CSU.

• Blocks in a Simulink diagram should be grouped together into subsystems based

upon a functional decomposition of the algorithm, or portion thereof, represented

in the diagram.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.4.3.2 im_0003: Controller model

ID: Title im_0003: Controller model

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Control models are organized using the following hierarchical structure.

• Top layer / root level

• Trigger layer

• Structure layer

• Data flow layer

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

101

Last Change V2.1

4.4.3.3 im_0004: Top layer / root level

ID: Title im_0004: Top layer / root level

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The top layer comprises the following:

• GN&C process scheduler

• GN&C executive

• GN&C domains

The GN&C executive and GN&C domains are Function-Call Subsystems and the

GN&C process scheduler acts as the functional call initiator.

The process scheduler is a Stateflow chart that calls each of the domains at the model

base rate.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.4.3.4 im_0005: Trigger layer

ID: Title im_0005: Trigger layer

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

There are two trigger layers below the top layer.

The first trigger layer corresponds to the domain rate group layer. Each domain rate

group is represented by a Triggered Subsystem that is called by the process scheduler.

The process scheduler models the ARINC process table and is not included in the

auto-coded model.

The second trigger layer corresponds to the CSU execution layer. Each CSU within a

rate group is represented by a Model Reference block. The CSUs are activated via a

function-call signal according to the domain mode for the current GN&C activity. The

domain mode is defined by the GN&C executive at the top layer. Domain level and

CSU level initialization also occurs at this level.

102

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.4.3.5 im_0006: Structure layer

ID: Title im_0006: Structure layer

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The structure layer contains the first level of functional decomposition for each CSU.

Depending upon the complexity of the CSU, there may be one or multiple structure

layers with a functional decomposition occurring at each successive layer.

At the very first CSU structure layer, junction boxes are used to consolidate multiple

input buses and multiple parameter buses into a single input bus and single parameter

bus respectively.

Examples:

Each CSU should be decomposed into lower level functions.

103

A single eML block should not contain the algorithm of the entire CSU.

A single eML block is only acceptable if there is little functionality at this level.

 Use of eML at a lower level is acceptable.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.4.3.6 mj_0002: Junction Box Composition

ID: Title mj_0002: Junction Box Composition

Priority Mandatory

Scope ORION

104

MATLAB

Version
All

MA Check No

Prerequisites

Description

No math operations should occur in the Junction Boxes. The Junction boxes should

only be used to organize bus data for the corresponding CSU input. This is mainly

done with the use of Bus_Selector, Bus_Creator, and Convert blocks. Data type

conversion is allowed.

For example, if a model is designed to use single precision yet receives the data from

another CSU with double precision, the data should be converted in the Junction Box

– not the CSU.

Note: Math operations include Quaternion Conjugation and Matrix Transformation.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.4.3.7 im_0007: Data flow layer

ID: Title im_0007: Data flow layer

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The data flow layer is where the algorithmic computations occur. The example shown

below uses allowable Simulink blocks but more complex algorithmic computations

may also be implemented in eML.

This is a continuation of the example shown for the structure layer.

105

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.4.3.8 jh_0056: Sample Times

ID: Title jh_0056: Sample Times

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

All blocks at a CSU level should not have explicitly defined sample times. The

sample times should be set to -1 (inherited). The executive will control the sample

time of the individual CSUs.

The only exception is for the “Constant” block which has the sample time set to “inf”.

This standard does not apply to the Domain level and above.

Note: Most of the blocks in the ORION Library have the sampling time locked at to

“-1” and the parameter does not appear in the block mask.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

106

Last Change V2.1

4.5 Stateflow

4.5.1 Chart Appearance

4.5.1.1 db_0123: Stateflow port names

ID: Title db_0123: Stateflow port names

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description
The name of a Stateflow input/output should be the same as the corresponding signal.

Exception: Reusable Stateflow blocks may have different port names.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.5.1.2 db_0129: Stateflow transition appearance

ID: Title db_0129: Stateflow transition appearance

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Transitions in Stateflow:

 Do not cross each other, if possible.

 Are not drawn one upon the other.

 Do not cross any states, junctions or text fields.

 Are allowed if transitioning to an internal state.

Transition labels can be visually associated to the corresponding transition.

Correct

107

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.5.1.3 db_0133: Use of patterns for Flowcharts

ID: Title db_0133: Use of patterns for Flowcharts

Priority Strongly recommended

Scope MAAB

MATLAB All

108

Version

MA Check No

Prerequisites None

Description

A Flowchart is built with the help of Flowchart patterns (e.g. IF-THEN-ELSE, FOR

LOOP, etc.):

 The data flow is oriented from the top to the bottom.

 Patterns are connected with empty transitions.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.5.1.4 db_0132: Transitions in Flowcharts

ID: Title db_0132: Transitions in Flowcharts

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

The following rules apply to transitions in Flowcharts:

 Conditions are drawn on the horizontal.

 Actions are drawn on the vertical.

 Loop constructs are intentional exceptions to this rule.

A transition in a Flowchart has a condition, a condition action or an empty transition.

Transition with condition:

Transition with condition action:

Empty transition:

109

Transition actions are not used in Flowcharts. Transition actions are only valid when

used in transitions between states in a state machine, otherwise they are not activated

because of the inherent dependency on a valid state to state transition to activate them.

Transition action:

At every junction, except for the last junction of a flow diagram, exactly one

unconditional transition begins. Every decision point (junction) must have a default

path.

A transition may have a comment, and the comment must be placed above the code to

ensure proper placement in the autocode:

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.5.1.5 mjc_0501: Format of entries in a State block

ID: Title mjc_0501: Format of entries in a State block

Priority Recommended

Scope ORION (modified MAAB jc_0501)

MATLAB

Version
All

MA Check No

Prerequisites None

Description A new line should be:

110

 Started after the completion of an assignment statement “;”.

Comments should be placed above the referred code to ensure proper placement in

the autocode.

Correct

Incorrect

Failed to start a new line after the completion of an assignment

statement “;”.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.1

4.5.1.6 jc_0511: Setting the return value from a graphical function

ID: Title jc_0511: Setting the return value from a graphical function

Priority Mandatory

Scope J-MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description The return value from a graphical function must be set in only one place.

111

Correct

Return value A is set in one place

Incorrect

Return value A is set in multiple places.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.5.1.7 jc_0531: Placement of the default transition

ID: Title jc_0531: Placement of the default transition

Priority Recommended

Scope J-MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

 Default transition is connected at the top of the state.

 The destination state of the default transition is put above the other states in

the same hierarchy.

Correct

 The default transition

is connected at the top

of the state.

 The destination state of

the default transition is

put above the other

112

states in the same

hierarchy.

Incorrect

 Default transition is

connected at the side of

the state (State 1).

 The destination state of

the default transition is

lower than the other

states in the same

hierarchy (SubSt_off).

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.5.1.8 jc_0521: Use of the return value from graphical functions

ID: Title jc_0521: Use of the return value from graphical functions

Priority Recommended

Scope J-MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The return value from a graphical function should not be used directly in a comparison

operation.

Correct

An intermediate variable is used in the conditional expression after the

assignment of the return value from the function "temp_test" to the

intermediate variable "a".

113

Incorrect

Return value of the function “temp_test” is used in the conditional

expression.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.5.2 Stateflow data and operations

4.5.2.1 na_0001: Bitwise Stateflow operators

ID: Title na_0001: Bitwise Stateflow operators

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The bitwise Stateflow operators (&, |, and ^) should not be used in Stateflow charts

unless bitwise operations are desired.

If bitwise operations are desired, the “Enable C-bit Operations” needs to be

enabled.

1. From the File Menu \ Chart Properties.

2. Select Enable C-bit operations.

The data type of the variable in the

comparison operation is clear

The data type of the variable in the

comparison operation is clear

114

Correct

Use “&&” and “II” for Boolean operation.

Use “&” and “I” for bit operation.

Incorrect

Use “&” and “I” for Boolean operation.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V 2.0

4.5.2.2 jc_0451: Use of unary minus on unsigned integers in Stateflow

ID: Title jc_0451: Use of unary minus on unsigned integers in Stateflow

Priority Recommended

115

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Do not perform unary minus on unsigned integers.

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.5.2.3 na_0013: Comparison operation in Stateflow

ID: Title na_0013: Comparison operation in Stateflow

Priority Recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

 Comparisons should be made only between variables of the same data type.

 If comparisons are made between variables of different data types then the

variables need to be explicitly type cast to matching data types.

Correct

Same data type in “i” and “n”

Incorrect

Different data type in “i” and

“d”

Correct

116

 Do not make comparisons between unsigned integers and negative numbers.

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.5.2.4 db_0122: Stateflow and Simulink interface signals and parameters

ID: Title db_0122: Stateflow and Simulink interface signals and parameters

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

A Chart uses strong data typing with Simulink (The option "Use Strong Data Typing

with Simulink I/O" must be selected).

Rationale
 Readability

 Workflow

 Verification and Validation

 Code Generation

117

 Simulation

Last Change V2.0

4.5.2.5 db_0125: Scope of internal signals and local auxiliary variables

ID: Title db_0125: Scope of internal signals and local auxiliary variables

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Internal signals and local auxiliary variables are "Local data" in Stateflow:

 All local data of a Stateflow block must be defined on the chart level or below

the Object Hierarchy.

 There must be no local variables on the machine level (i.e. there is no

interaction between local data in different charts).

 Parameters and constants are allowed at the machine level.

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.5.2.6 jc_0481: Use of hard equality comparisons for floating point numbers in

Stateflow

ID: Title
jc_0481: Use of hard equality comparisons for floating point numbers in

Stateflow

118

Priority Recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

 Do not use hard equality comparisons (Var1 == Var2) with two floating point

numbers.

 If a hard comparison is required a margin of error should be defined and used in

the comparison (LIMIT in the example).

 Hard equality comparisons can be done between two integer data types.

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.5.2.7 jc_0491: Reuse of variables within a single Stateflow scope

ID: Title jc_0491: Reuse of variables within a single Stateflow scope

Priority Recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description The same variable should not have multiple meanings (usages) within a single

119

Stateflow scope.

Correct

Variable of loop counter must not be

used other than loop counter.

Incorrect

The meaning of the variable “i”

changes from the index of the loop

counter to the sum of a+b

Correct

tempVar is defined as local scope in

both SubState_A and SubState_B

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

120

Last Change V2.0

4.5.2.8 jc_0541: Use of tunable parameters in Stateflow

ID: Title jc_0541: Use of tunable parameters in Stateflow

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Tunable parameters should be included in a Chart as inputs from the Simulink model.

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.5.2.9 db_0127: MATLAB commands in Stateflow

ID: Title db_0127: MATLAB commands in Stateflow

Priority Mandatory

Scope MAAB

MATLAB

Version
All

MA Check No

　　

もしくはor

121

Prerequisites None

Description

The following rules apply to logic in Stateflow:

 MATLAB functions are not used.

 MATLAB instructions are not used.

 MATLAB operators are not used.

 Project-specific MATLAB functions are not used.

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.5.2.10 jm_0011: Pointers in Stateflow

ID: Title jm_0011: Pointers in Stateflow

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description In a Stateflow diagram, pointers to custom code variables are not allowed.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.5.3 Events

4.5.3.1 db_0126: Scope of events

ID: Title db_0126: Scope of events

Priority Mandatory

122

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

The following rules apply to events in Stateflow:

 All events of a Chart must be defined on the chart level or lower.

 There is no event on the machine level (i.e. there is no interaction with local

events between different charts).

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.5.3.2 jm_0012: Event broadcasts

ID: Title jm_0012: Event broadcasts

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites db_0126: Scope of events

Description

The following rules apply to event broadcasts in Stateflow:

 Directed event broadcasts are the only type of event broadcasts allowed.

 The send syntax or qualified event names are used to direct the event to a

particular state.

 Multiple send statements should be used to direct an event to more than one

state.

Example using the send syntax:

Example using qualified event names:

123

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.5.4 Statechart Patterns

4.5.4.1 db_0150: State machine patterns for conditions

ID: Title db_0150: State machine patterns for conditions

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The following patterns are used for conditions within Stateflow state machines:

Equivalent Functionality State Machine Pattern

ONE CONDITION:

(condition)

UP TO THREE

CONDITIONS, SHORT

FORM:

(The use of different logical

operators in this form is not

allowed, use sub conditions

instead)

(condition1 && condition2)

124

(condition1 || condition2)

TWO OR MORE

CONDITIONS, MULTILINE

FORM:

A sub condition is a set of

logical operations, all of the

same type, enclosed in

parentheses.

(The use of different operators

in this form is not allowed, use

sub conditions instead)

(condition1 ...
&& condition2 ...
&& condition3)

(condition1 ...
|| condition2 ...
|| condition3)

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.5.4.2 db_0151: State machine patterns for transition actions

ID: Title db_0151: State machine patterns for transition actions

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The following patterns are used for transition actions within Stateflow state

machines:

Equivalent Functionality State Machine Pattern

125

ONE TRANSITION

ACTION:

action;

TWO OR MORE

TRANSITION ACTIONS,

MULTILINE FORM:

(Two or more transition

actions in one line are not

allowed)

action1;
action2;
action3;

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.5.5 Flowchart Patterns

The following rules illustrate sample patterns used in flow charts. As such they would normally be

part of a much larger Stateflow diagram.

4.5.5.1 db_0148: Flowchart patterns for conditions

ID: Title db_0148: Flowchart patterns for conditions

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The following patterns are used for conditions within Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern

ONE CONDITION:

[condition]

126

UP TO THREE

CONDITIONS, SHORT

FORM: (The use of

different logical operators in

this form is not allowed, use

sub conditions instead.)

[condition1 && condition2 &&
condition3]
[condition1 || condition2 ||
condition3]

TWO OR MORE

CONDITIONS,

MULTILINE FORM:

(The use of different logical

operators in this form is not

allowed, use sub conditions

instead.)

[condition1 ...
&& condition2 ...
&& condition3]
[condition1 ...
|| condition2 ...
|| condition3]

CONDITIONS WITH

SUBCONDITIONS:

(The use of different logical

operators to connect sub

conditions is not allowed.

The use of brackets is

Mandatory.)

[(condition1a || condition1b) ...
&& (condition2a || condition2b)
...
&& (condition3)]
[(condition1a && condition1b)
...
|| (condition2a && condition2b)
...
|| (condition3)]

127

CONDITIONS, WHICH

ARE VISUALLY

SEPARATED:

(This form can be mixed up

with the patterns listed

above.)

[condition1 && condition2]
[condition1 || condition2]

Rationale

1. Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.0

4.5.5.2 db_0149: Flowchart patterns for condition actions

ID: Title db_0149: Flowchart patterns for condition actions

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The following patterns are used for condition actions within Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern

ONE CONDITION ACTION:

action;

128

TWO OR MORE CONDITION

ACTIONS, MULTILINE FORM:

(Two or more condition actions in

one line are not allowed.)

action1; ...

action2; ...

action3; ...

CONDITION ACTIONS, WHICH

ARE VISUALLY SEPARATED:

(This form can be mixed up with

the patterns listed above.)

action1a;

action1b;

action2;

action3;

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.5.5.3 db_0134: Flowchart patterns for If constructs

ID: Title db_0134: Flowchart patterns for If constructs

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites
db_0148: Flowchart patterns for conditions

db_0149: Flowchart patterns for condition actions

Description

The following patterns are used for If constructs within Stateflow Flowcharts:

Equivalent

Functionality
Flowchart Pattern

129

IF THEN

if (condition){

 action;

}

IF THEN ELSE

if (condition) {

 action1;

}

else {

 action2;

}

IF THEN ELSE IF

if (condition1) {

 action1;

}

else if (condition2) {

 action2;

}

else if (condition3) {

 action3;

}

else {

 action4;

}

130

Cascade of IF THEN

if (condition1) {

 action1;

 if (condition2) {

 action2;

 if (condition3) {

 action3;

 }

 }

}

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.5.5.4 db_0159: Flowchart patterns for case constructs

ID: Title db_0159: Flowchart patterns for case constructs

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites
db_0148: Flowchart patterns for conditions

db_0149: Flowchart patterns for condition actions

Description
The following patterns must be used for case constructs within Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern

131

CASE with exclusive selection

selection = ...;

switch (selection) {

 case 1:

 action1;

 break;

 case 2:

 action2;

 break;

 case 3:

 action3;

 break;

 default:

 action4;

}

CASE with exclusive

conditions

c1 = condition1;

c2 = condition2;

c3 = condition3;

if (c1 && !c2 && !c3) {

 action1;

}

elseif (!c1 && c2 && !c3) {

 action2;

}

elseif (!c1 && !c2 && c3) {

 action3;

}

else {

 action4;

}

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.5.5.5 db_0135: Flowchart patterns for loop constructs

ID: Title db_0135: Flowchart patterns for loop constructs

132

Priority Recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites
db_0148: Flowchart patterns for conditions

db_0149: Flowchart patterns for condition actions

Description

The following patterns must be used to create Loops within Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern

FOR LOOP

for

(index=0;index<number_of_loops;index++)

{

 action;

}

WHILE LOOP

while (condition) {

 action;

}

133

DO WHILE LOOP

do {

 action;

}

while (condition);

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.6 Embedded MATLAB (eML)

4.6.1 jh_0201: eML Function Types

ID: Title jh_0201: eML Function Types

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites

jh_0073: eML Header

jh_0079: Model and Matlab Filenames

jh_0202: Testable Units

jh_0200: Guidelines for Managing Model Complexity

Description

eML Functions can exist in one of two forms:

1. As an eML function that is written directly into an eML block

 The eML code only exists within the model that contains it and is not

separately stored or separately editable.

 The only interface to the eML function is the eML block in which it

resides

 A full header is still required

134

2. As an externally saved “dot-m” file

 Externally saved “dot-m” files are considered “Testable Units”

 These functions may be called from multiple interfaces from within a

single Model (see limitations below)

 These functions are fully defined in a separate file

 A full header is required

 The declaration on the line immediately succeeding the function

declaration must have the following code

o eml.inline(“never”);
o This declaration will ensure that the function is autocoded as an

independent function and is fully testable. This will also maintain

a One-to-One Testable Unit-to-autocode function (see jh_0202:

Testable Units)

Major Limitations related to the use of eML:

The current version of the Simulink tool has 2 major limitations that need to be taken

into account when developing eML functions.

1. Interface Limitation: Eml code can‟t call Simulink models or Stateflow

Charts. The following diagrams below shows the calling abilities of each of

the 3 tools (Simulink, Stateflow, eML).

Once an eML function is used, all function calls below that model must also be eML.

2. Duplication in Autocode: eML Functions are only reused in the autocode

135

when they are called multiple times from within the same model. eML

functions that are shared between models will result in multiple instances of

the function in the autocode. The only way to ensure that eML code is not

coded multiple times when used by multiple models is to wrap it in a

Simulink model and call it using the Model Reference feature.

The Diagram below illustrates the current limitation with eML and Real-Time

Workshop. The shared eML function, “EMLfunction”, will be present in the

autocode for both “Model A” and “Model B”.

To work around this limitation, eML functions can be “wrapped” in a Simulink

model that only contains an eML block. The diagram below illustrates this approach

that is consistent with the ORION project direction:

136

This approach will create a single autocoded function for the “EMLfunction” that is

only called by the code for “Model A” and “Model B”.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.6.2 im_0008: Source lines of eML

ID: Title im_0008: Source lines of eML

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites jh_0201: eML Function Types

Description

Each eML function must have less than 60 source lines of code. This restriction

applies to eML functions that reside at the Simulink block diagram as well as

externally defined eML functions (a.k.a. “dot-m” files). The 60 source lines of code

limitation is not additive and applies to each function individually.

137

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.1

4.6.3 im_0009: Number of called function levels

ID: Title im_0009: Number of called function levels

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

There shall be no more than 3 levels of function calls allowed from the eML function

block that resides at the Simulink block diagram level. The eML function block that

resides at the Simulink block diagram level counts as the first level – unless it is

simply a wrapper for an externally defined eML function (a.k.a. “dot-m” file).

This includes functions that are defined within the eML block and those in separate

.m files

For example:

if the eML function block with function foobar1 calls foobar2, a subfunction or other

user defined function residing in an external file, that subfunction or function,

foobar2, may similarly call another subfunction or function, such as foobar3. This

would constitute 3 levels of function calls (the first level eML function block

function, foobar1, it‟s called subfunction or function, foobar2, at the second level,

and the third level subfunction or function call, foobar3). No further calls to

subfunctions or functions would be allowed from foobar3, as this is the third and last

allowed level.

Note: A call to a USA utility function does not count as a level.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.3

4.6.4 jr_0002: Number of nested if/for statement blocks

ID: Title jr_0002: Number of nested if/for statement blocks

Priority Strongly Recommended

138

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

There shall be no more than 3 levels of nested if/for statement blocks allowed within

an eML function block that resides at the Simulink block diagram level, or a lower

level.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.2

4.6.5 jh_0110: eML Function Reuse

ID: Title jh_0110: eML Function Reuse

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

eML functions can only be called multiple times within the same Model (CSU or

Model Reference). The same eML function can be called by separate eML blocks,

but only if they reside in the same model. Shared eML functions should not be called

directly. If a shared function is written in eML and needs to be used in multiple

CSUs, the eML function should be wrapped in a Simulink model and called through

model reference.

The reason for this standard is as follows. The autocoder, Real-Time Workshop,

does not have knowledge of shared eML functions. Due to this limitation, the

autocoder will create a version of the eML function each time that it is used across

models or eML blocks. Each autocode version may be coded in a different way

depending on how it was called and the method that the RTW autocoder used to

optimize the function and fold it into the surrounding operations. The existence of

multiple versions of the same function makes the V&V process significantly more

difficult because each of the instances of the reused eML function will need to be

verified and validated. Therefore, this method is not compatible with the ORION

GN&C Architecture.

Wrapping the eML function in a Simulink wrapper ensures only one instance of the

autocode for that function and creates a generic function interface that is identical for

all users of the function. This Simulink function can be called from either Simulink

139

or Stateflow.

Rationale

 Readability
 Workflow
 Simulation

 Verification and Validation
 Code Generation

Last Change V1.1

4.6.6 im_0010: Number of inline function calls

ID: Title im_0010: Number of inline function calls

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description There shall be no more than 12 inline function calls allowed within each eML block.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.6.7 jh_0063: eML block input/output settings

ID: Title jh_0063: eML block input/output settings

Priority Recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

All inputs and outputs to eML blocks should have the DataType and Size explicitly

defined via the Model Explorer (e.g. they can‟t be set to “DataType:Inherit: Same as

Simulink” and “Size:-1”). This provides a more rigorous data type check for eML

blocks and prevents the need for using assert statements.

Note: For vector inputs, enter the size in one of the following formats:

 Column vector: [3, 1]

 Row vector: [1, 3]

Rationale
 Readability

 Workflow

 Verification and Validation

 Code Generation

140

 Simulation

Last Change V1.0

4.6.8 jh_0021: Restricted Variable Names

ID: Title jh_0021: Restricted Variable Names

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Avoid using reserved C variable names such as const, TRUE, FALSE, infinity, nill,

double, single, enum, for eML code. These names may conflict with the compiler

after the model is autocoded.

Avoid, using variable names that conflict with eML library functions such as "conv".

A list of all eML library function names can be found in the eML users guide.

The variable names “i” and “j” should not be used for looping. These names may

conflict with those used by Real-time Workshop.

Note: This standard only applies to variable names used within eML

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.2

4.6.9 jh_0064: eML if statement

ID: Title jh_0064: eML if statement

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Variables used in if statements must be of the same data type. This will prevent

Matlab from automatically downcasting the data type for the variables so that they

will be comparable. If this rule is not followed, the model may produce unexpected

results.

141

No type casting is needed for hard coded constants used in an if statement. The

constants will be promoted to the same type as the variable.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.1

4.6.10 jh_0023: Arrays

ID: Title jh_0023: Arrays

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

This standard is enforced automatically by the m-lint tool.

eML does not support dynamic memory allocation. This presents an issue when

using arrays. This was one of the most common errors found in the conversion

process from Matlab to eML. The size of arrays must be declared before values can

be assigned to the array. For example:

o The following code will generate an error:

r_ECI(1) = 20187984;

r_ECI(2) = 421063;

r_ECI(3) = -7806383;

o The array size must be determined before any values are assigned as

follows:

r_ECI = [0 0 0]; %this declares the array as a 1x3 array

r_ECI(1) = 20187984;

r_ECI(2) = 421063;

r_ECI(3) = -7806383;

o The following code will also work since the array size is being declared as

it is being assigned a value:

r_ECI = [20187984 421063 -7806383];

o Now that the array is initialized the values can change but the size of the

array may not change. For example, the following code will generate an

error:

r_ECI = [20187984 421063 -7806383];

142

r_ECI = [20187984 421063 -7806383 10000]; %the size of the array has already

been set and can’t change

o This rule also applies to structures. Once a structure has been read or

passed to a function, fields can no longer be added to it. For example, the

following code will generate and error:

Constant.A = 20187984;

Constant.B = 421063;

myVar = Constant.A; %the structure is used here

Constant.C = -7806383; %another field can’t be added

Also, cell arrays and mx arrays are not allowed by eML.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.6.11 jh_0024: Strings

ID: Title jh_0024: Strings

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The use of strings is not recommended. eML stores strings as character arrays and

these arrays can't be resized to accommodate a string value of different length due to

lack of dynamic memory allocation. Also, stings are not a supported data type in

Simulink so eML blocks could not pass the string data outside the block.

For example the following code will produce an error:

name = ‘rate_error’; %this will create a 1 x 10 character array

name = ‘x_rate_error’; %this will cause an error because the array size is now 1 x

12 instead of 1 x 10

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

143

4.6.12 jh_0025: Structures

ID: Title jh_0025: Structures

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

This standard is enforced automatically by the m-lint tool.

Once a structure has been read or passed to a function, fields can no longer be added

to it. For example, the following code will generate and error:

Constant.A = 20187984;

Constant.B = 421063;

myVar = Constant.A; %the structure is used here

Constant.C = -7806383; %another field can’t be added

Field values may be changed, just not added after being accessed. For example, the

following code is acceptable:

Constant.A = 20187984;

Constant.B = 421063;

myVar = Constant.A; %the structure is used here

Constant.A =51146 ; %an existing field value can be manipulated

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.6.13 jh_0026: Switch/case statements

ID: Title jh_0026: Switch/case statements

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

This standard is enforced automatically by the m-lint tool.

When using “switch” and “case” statements you may not use a variable or structure

in the “case” expression; this value must be constant. The following code will

144

generate an error:

switch(iopt)

 case enum.LVLH % Local Vertical, Local Horizontal

 uy = -uh;

 uz = -ur;

 ux = cross(uy, uz);

 case enum.WIND_REL % Aerodynamic angles

 ux = uv;

 uy = -uh;

 uz = cross(ux, uy);

 otherwise % Default to Aerodynamics angles

 ux = uv;

 uy = -uh;

 uz = cross(ux, uy);

end

 The conditions of each case must not reference a structure value. The

following code fixes this error:

switch(iopt)

 case 1 %enum.LVLH = 1

 uy = -uh;

 uz = -ur;

 ux = cross(uy, uz);

 case 2 %enum.WIND_REL = 2

 ux = uv;

 uy = -uh;

 uz = cross(ux, uy);

 otherwise

 ux = uv;

 uy = -uh;

 uz = cross(ux, uy);

end

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.6.14 jh_0027: Multiple Code Paths

ID: Title jh_0027: Multiple Code Paths

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

145

Prerequisites None

Description

This standard is enforced automatically by the m-lint tool.

If a variable affects the output of a function it must be assigned in all possible paths

of the code. For example, the following code contains multiple paths based on the

value of “iopt”.

function [ux, uy, uz] = comp(ipot, uh, ur)

 switch(iopt)

 case 1

 uy = -uh;

 uz = -ur;

 ux = cross(uy, uz);

 case 2

 ux = uv;

 uy = -uh;

 uz = cross(ux, uy);

end

If the variable “iopt” does not equal either 1 or 2, then the variables ux, uy, and uz

will never be assigned a value. Consider always using “otherwise” with a “switch”

statement and also using an “else” with an if/then statement. In the code below, all

paths of the function will assign a value to each of the output variables.

function [ux, uy, uz] = comp(iopt, uh, ur)

 switch(iopt)

 case 1

 uy = -uh;

 uz = -ur;

 ux = cross(uy, uz);

 case 2

 ux = uv;

 uy = -uh;

 uz = cross(ux, uy);

 otherwise

 ux = -uv;

 uy = uh;

 uz = cross(ux, uz);

end

This rule also applies to the “return” function so that necessary code is not skipped.

It is recommended that the “return” statement not be used.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

146

4.6.15 jh_0029: m-files

ID: Title jh_0029: m-files

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

This standard is enforced automatically by the m-lint tool.

All eML files that are stored as separate m-files must be in a common directory. All

eML files must have the %#eml declaration after the function declaration at the

beginning of the code.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.2

4.6.16 jh_0030: Extrinsic function

ID: Title jh_0030: Extrinsic function

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

This standard is enforced automatically by the m-lint tool.

Use of extrinsic functions is not allowed.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.1

4.6.17 ek_0002: Recursive functions

ID: Title ek_0002: Recursive functions

Priority Mandatory

Scope ORION

147

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The use of recursive function calls shall be avoided.

The SPD restricts the use of recursion:

OCS Rule 109 (AV Rule 119)
Functions shall not call themselves, either directly or indirectly (i.e. recursion shall

not be

allowed).

Rationale: Since stack space is not unlimited, stack overflows are possible.

Exception: Recursion will be permitted if it can be proven that adequate resources

exist to support the maximum level of recursion possible.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.1

4.6.18 ek_0003: Global Variables

ID: Title ek_0003: Global Variables

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

This standard is enforced automatically by the m-lint tool.

The use of global variables is not allowed. Variables created in an eML function are

only accessible to that function. This rule also applies to subfunctions within eML

blocks. For example, a subfunction within an eML block cannot see the variables

used by the main eML function unless these variables are passed to the function with

the function call.

Use persistent variables or unit delay blocks for maintaining values between function

calls. See standard ek_0010.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

148

Last Change V1.0

4.6.19 jh_0073: eML Header

ID: Title jh_0073: eML Header

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

eML functions should have a header that contains the following information before

the function declaration:

 Function name

 Description of function

 Assumptions and Limitations

 Developer Name, email, and phone number

 Description of changes from previous versions is applicable

 Lists of inputs and outputs

Example:

%***

% FUNCTION NAME:

% util_vec_unitize

%

% DESCRIPTION:

% Normalizes/unitizes a vector of size 3

%

% INPUT:

% double b – input 3 vector

%

% OUTPUT:

% double y – normalized/unitized 3 vector

%

% ASSUMPTIONS AND LIMITATIONS:

% None

%

% MODIFICATION HISTORY (INCLUDING INITIAL IMPLEMENTATION):

% 01/02/03 – Louis Breger (CSDL), email, phone #

% * Initial implementation

%

% 02/06/03 – Chinwe Nyenke (CSDL), email, phone #

% * Added protection for divide by zero

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

149

Last Change V1.1

4.6.20 jh_0093: Parameter Bus for eML

ID: Title jh_0093: Parameter Bus for eML

Priority Recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

For embedded Matlab blocks, the entire parameter bus should be input if used and

the separate elements of the bus accessed within the code instead of passing each

element used as a function argument.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.6.21 jh_0084: eML Comments

ID: Title jh_0084: eML Comments

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description All eML functions should be properly commented to describe functionality.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.6.22 do_0001: Declaring Local Variables in eML

ID: Title do_0001: Declaring Local Variables in eML

Priority Mandatory

Scope ORION

150

MATLAB

Version
All

MA Check No

Prerequisites None

Description

A local eML variable shall be explicitly type cast when it is intend to have a data

type other than an inherited type or double. The properties (class, size and

complexity) of a variable are inherited from the right side of an assignment when the

variable is first assigned. First assignments to a constant results in a data type of

“double”

For example:

State = prevState; % State is set to the type of “prevState”

Num_Of_Samples = 0; % Num_Of_Samples is of type double

Buff_Size = uint32(6) % Buff_Size is of type uint32

Local eML variables used as counters should be typed as an int or uint. This will

prevent the code from having logic comparisons to reals.

Local eML variables used as an array index should be typed to an int. This will

prevent the code from having extra (int32_t) type casts.

Exceptions:

The index variable of a for-loop does not require a type cast if the index variable is

first assigned in the for-loop expression. The index variable will default to a type

int32.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.7 Code Development Standards

4.7.1 hyl_0204: Standard units

ID: Title hyl_0204: Standard units

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description
The models shall output signals in English units unless otherwise required by external

interfaces.

 Force, mass, and length units shall be LBF, SLUG, and FT (respectively) unless

151

otherwise required by an external interface

 The units abbreviation shall follow the convention outlined in the table blelow.

Abbreviation Description

A Amps

Bit Bits

Byte Bytes

BTU British Thermal Units

C Degrees Celsius

Character Characters

CT Counts

DEG Degrees

F Degrees Fahrenheit

FT Feet

G Gravitational Acceleration

GB Gigabyte

HR Hour

Hz Hertz

IN Inches

KBit Kilobit

KByte Kilobyte

KHz Kilohertz

KV Kilovolt

LBF Pounds Force

LBM Pounds Mass

MA Milliampere

MB Megabyte

Min Minutes

MSec Milliseconds

MV Mill volts

NA Not Applicable

ND Non Dimensional

QTI Quanta In

QTO Quanta Out

R Degrees Rankin

Rad Radians

152

Sec Seconds

SLUG Slugs

TB Terabyte

V Volts

VAR Variable Units

Words
Standard word size for a

computing platform

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.0

4.7.2 jr_0004: Error Handling

ID: Title jr_0004: Error Handling

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The developer shall add error handling in accordance with the “Error Handling and

Logging Guidance” memo (Doc #: FltDyn-CEV-11-52).

Link on ICE:

https://ice.exploration.nasa.gov/confluence/pages/worddav/preview.action?fileName

=ErrorHandlingGuidance.docx&pageId=106041166

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

4.8 Configuration Management

4.8.1 jh_0004: MATLAB artifacts under configuration control

ID: Title jh_0004: MATLAB artifacts under configuration control

Priority Mandatory

https://ice.exploration.nasa.gov/confluence/pages/worddav/preview.action?fileName=ErrorHandlingGuidance.docx&pageId=106041166
https://ice.exploration.nasa.gov/confluence/pages/worddav/preview.action?fileName=ErrorHandlingGuidance.docx&pageId=106041166

153

Scope ORION

MATLAB

Version
all

MA Check No

Prerequisites None

Description

If a Configuration Management tool is used the following files should be included for

each project:

• *.mdl files

• *.m setup scripts

• *.h files used for buses and ARINC blocks

• Utility files and models needed for simulation (*.c, *.cpp, etc.)

Some Simulink generated files are specific to the environment in which the

simulation is executed. This may cause issues when simulating the model in a

different environment. These files are not needed for simulation and will be

recreated once the model is run again. To avoid potential issued do not include the

following files in a project:

• *.mex* files

• slprj directory

• sfprj directory

• *_rtw directory

• *.mat files created by running model

• Other files generated from running the model

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.0

5 Appendix

5.1 Modeling Guidelines Chart

The following table shows a guideline for which tool to use for different types of algorithms

Algorithm Type Simulink Stateflow eML Notes/examples
Simple Logic
•if/then
•switch/case
•for/while loops

X X X Ex: If/then with <5 paths and no nesting

Complex Logic
•nested if/then
•nested switch/case
•nested for/while loops

X
preferred

X Ex: If/then with numerous paths and multiple
levels of nesting

Simple/Short
Numerical Expressions X Ex: <6 consecutive operations, <6

variables/signals

Complex/Lengthy
Numerical Expressions X X

preferred

Ex: >6 consecutive operations, >6
variables/signals

Numerical Expressions
containing continuously valued
states

X*
Ex: Difference equations, integrals, derivatives,
filters
*The actual integrator function can be written
in eML

Combination of:
•Complex Logic
•Simple Numerical Expressions

X iterating a counter is considered a simple
numeric calculation

Combination of:
•Simple Logic
•Complex Numerical
Expressions

X
For Logic

X
For Math

•Can use only Simulink, only eML or use
Simulink for the logic and eML for the math

Combination of
•Complex logic
•Complex Numerical
Expressions

X
for Logic

X
for Logic

and/or Math

•Use Simulink or eML for the numerical
calculations
•Stateflow should invoke the execution of this
subsystem using a function-call

Modal Logic X
Where the control function to be performed at
the current time depends on a combination of
past and present logical conditions

5.2 Configuration Settings

List of configuration settings

5.3 Model Advisor Standards Checks Summary

ID: Title Priority Scope MA Check

ar_0001: Filenames Mandatory MAAB YES

2

ar_0002: Directory names Mandatory MAAB YES

bn_0001: Subsystem Name Length Limit Strongly recommended ORION YES

bn_0002: Signal name length limit Strongly recommended ORION YES

bn_0003: Use of If-Then-Else Action Subsystem to Replace Multiple Switches Strongly recommended ORION NO

db_0043: Simulink font and font size Strongly recommended MAAB YES

db_0081: Unconnected signals, block inputs and block outputs Mandatory MAAB YES

db_0097: Position of labels for signals and buses Strongly recommended MAAB NO

db_0110: Tunable parameters in basic blocks Strongly recommended MAAB YES

db_0112: Indexing Strongly recommended MAAB YES

db_0114: Simulink patterns for If-then-else-if constructs Strongly recommended MAAB NO

db_0115: Simulink patterns for case constructs Strongly recommended MAAB NO

db_0116: Simulink patterns for logical constructs with logical blocks Strongly recommended MAAB NO

db_0117: Simulink patterns for vector signals Strongly recommended MAAB NO

db_0122: Stateflow and Simulink interface signals and parameters Strongly recommended MAAB YES

db_0123: Stateflow port names Strongly recommended MAAB YES

db_0125: Scope of internal signals and local auxiliary variables Strongly recommended MAAB YES

db_0126: Scope of events Mandatory MAAB YES

db_0127: MATLAB commands in Stateflow Mandatory MAAB YES

db_0129: Stateflow transition appearance Strongly recommended MAAB NO

db_0132: Transitions in Flowcharts Strongly recommended MAAB YES

db_0133: Use of patterns for Flowcharts Strongly recommended MAAB NO

db_0134: Flowchart patterns for If constructs Strongly recommended MAAB NO

db_0135: Flowchart patterns for loop constructs Recommended MAAB NO

db_0140: Display of basic block parameters Recommended MAAB YES

db_0142: Position of block names Strongly recommended MAAB YES

db_0144: Use of Subsystems Strongly recommended MAAB NO

db_0146: Triggered, enabled, conditional Subsystems Strongly recommended MAAB YES

db_0148: Flowchart patterns for conditions Strongly recommended MAAB NO

db_0149: Flowchart patterns for condition actions Strongly recommended MAAB NO

db_0150: State machine patterns for conditions Strongly recommended MAAB NO

db_0151: State machine patterns for transition actions Strongly recommended MAAB YES

db_0159: Flowchart patterns for case constructs Strongly recommended MAAB NO

dm_0001: Signal and Bus Element Naming Convention Strongly recommended ORION YES

ek_0002: Recursive functions Mandatory ORION YES

ek_0003: Global Variables Strongly recommended ORION m-lint

ek_0010: Matlab/Simulink algorithm States recommendations Strongly recommended ORION NO

hyl_0103: Model color coding Strongly recommended ORION YES

hyl_0110: Branching line format Strongly recommended ORION NO

hyl_0112: Title on each page Strongly recommended ORION YES

hyl_0113: Notes on each page Strongly recommended ORION YES

hyl_0114: Documentation of deviations to standards Strongly recommended ORION NO

hyl_0201: Use of standard library blocks only Mandatory ORION YES

hyl_0202: Use of revision/trace block Strongly recommended ORION YES

hyl_0203: Model publishing Recommended ORION NO

hyl_0204: Standard units Mandatory ORION NO

hyl_0206: Only boolean inputs to encoder blocks Strongly recommended ORION NO

hyl_0207: Limiting input to multiport switches Mandatory ORION NO

hyl_0208: Prevention of divide-by-zero Mandatory ORION NO

hyl_0209: Prevention of negative square root Mandatory ORION NO

hyl_0211: Prohibit use of test points Recommended ORION YES

3

hyl_0301: Block naming convention Strongly recommended ORION YES

hyl_0302: Usable characters for block names Strongly recommended ORION YES

hyl_0305: Block name uniqueness Strongly recommended ORION YES

hyl_0307: Use of subsystem name Strongly recommended ORION YES

hyl_0308: Use of reference model name Strongly recommended ORION YES

hyl_0309: Block name usage Recommended ORION NO

hyl_0311: Naming of signals passed through multiple subsystems Strongly recommended ORION YES

im_0001: Guidelines for mixed use of Simulink and eML Strongly recommended ORION NO

im_0003: Controller model Mandatory ORION NO

im_0004: Top layer / root level Mandatory ORION NO

im_0005: Trigger layer Mandatory ORION NO

im_0006: Structure layer Mandatory ORION NO

im_0007: Data flow layer Mandatory ORION NO

im_0008: Source lines of eML Mandatory ORION YES

im_0009: Number of called function levels Mandatory ORION NO

im_0010: Number of inline function calls Mandatory ORION YES

im_0015: ORION GN&C Model Architecture Mandatory ORION NO

jc_0061: Display of block names Recommended MAAB YES

jc_0081: Icon display for Port block Recommended MAAB YES

jc_0121: Use of the Sum block Recommended MAAB YES

jc_0131: Use of Relational Operator block Recommended J-MAAB YES

jc_0141: Use of the Switch block Strongly recommended MAAB YES

jc_0171: Maintaining signal flow when using Goto and From blocks Strongly recommended MAAB NO

jc_0201: Usable characters for Subsystem names Strongly recommended MAAB YES

jc_0211: Usable characters for Inport block and Outport block Strongly recommended MAAB YES

jc_0221: Usable characters for signal line names Strongly recommended MAAB YES

jc_0281: Naming of Trigger Port block and Enable Port block Strongly recommended J-MAAB YES

jc_0351: Methods of initialization Recommended MAAB NO

jc_0451: Use of unary minus on unsigned integers in Stateflow Recommended MAAB YES

jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow Recommended MAAB YES

jc_0491: Reuse of variables within a single Stateflow scope Recommended MAAB NO

jc_0511: Setting the return value from a graphical function Mandatory J-MAAB YES

jc_0521: Use of the return value from graphical functions Recommended J-MAAB YES

jc_0531: Placement of the default transition Recommended J-MAAB YES

jc_0541: Use of tunable parameters in Stateflow Strongly recommended MAAB YES

jh_0001: Use of ARINC blocks for partition to partition data flow Mandatory ORION NO

jh_0004: MATLAB artifacts under configuration control Mandatory ORION NO

jh_0005: Setup files for model parameter initialization Strongly recommended ORION NO

jh_0006: Setup files for bus initialization Strongly recommended ORION NO

jh_0007: blocks in a model Recommended ORION YES

jh_0011: Model release Mandatory ORION NO

jh_0018: Variable type casting Recommended ORION YES

jh_0021: Restricted Variable Names Mandatory ORION YES

jh_0023: Arrays Mandatory ORION m-lint

jh_0024: Strings Strongly recommended ORION YES

jh_0025: Structures Mandatory ORION m-lint

jh_0026: Switch/case statements Mandatory ORION m-lint

jh_0027: Multiple Code Paths Mandatory ORION m-lint

jh_0029: m-files Mandatory ORION m-lint

jh_0030: Extrinsic function Strongly recommended ORION m-lint

4

jh_0040: Usable characters for Simulink Bus Names Strongly recommended MAAB
YES
(jc_0221)

jh_0041: Simulink Bus name length limit Strongly recommended ORION
YES
(bn_0002)

jh_0042: Required Software Mandatory ORION NO

jh_0043: Approved Platforms Mandatory ORION NO

jh_0049: Use of Model References or Reusable Subsystems Strongly recommended ORION YES

jh_0051: Simulink Bus Format Strongly recommended ORION YES

jh_0055: Use of Masks Mandatory ORION YES

jh_0056: Sample Times Mandatory ORION YES

jh_0061: Use of Parameters Mandatory ORION NO

jh_0062: Constant Block Naming Strongly Recommended ORION YES

jh_0063: eML block input/output settings Recommended ORION YES

jh_0064: eML if statement Mandatory ORION NO

jh_0070: Model Configuration Settings Mandatory ORION YES

jh_0073: eML Header Mandatory ORION YES

jh_0079: Model and Matlab Filenames Mandatory ORION NO

jh_0084: eML Comments Mandatory ORION YES

jh_0093: Parameter Bus for eML Recommended ORION NO

jh_0109: Merge Blocks Strongly Recommended ORION NO

jh_0101: Use of Right-Handed Quaternions Only Mandatory ORION NO

jh_0110: eML Function Reuse Mandatory ORION NO

jh_0111: Bus Ordering and Alignment Mandatory ORION NO

jh_0117: Shared CSUs Across Domains Mandatory ORION NO

jm_0002: Block resizing Mandatory MAAB NO

jm_0010: Port block names in Simulink models Strongly recommended MAAB YES

jm_0011: Pointers in Stateflow Strongly recommended MAAB YES

jm_0012: Event broadcasts Strongly recommended MAAB YES

jr_0002: Number of nested if/for statement blocks Strongly recommended ORION YES

mdb_0032: Simulink signal appearance Strongly recommended ORION NO

mdb_0042: Port block in Simulink models Strongly recommended ORION YES

mdb_0141: Signal flow in Simulink models Strongly recommended ORION NO

mdb_0143: Similar block types on the model levels Recommended ORION YES

mj_0001: CSU input Bus Naming Recommended ORION NO

mj_0002: Junction Box Composition Mandatory ORION NO

mjc_0111: Direction of Subsystem Strongly recommended ORION YES

mjc_0501: Format of entries in a State block Recommended ORION YES

na_0001: Bitwise Stateflow operators Strongly recommended MAAB YES

na_0002: Appropriate implementation of fundamental logical and numerical operations Mandatory MAAB NO

na_0003: Simple logical expressions in If Condition block Mandatory MAAB YES

na_0004 Simulink model appearance Recommended MAAB YES

na_0005: Port block name visibility in Simulink models Strongly recommended MAAB YES

na_0006: Guidelines for mixed use of Simulink and Stateflow Strongly recommended MAAB NO

na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines Strongly recommended MAAB NO

na_0008: Display of labels on signals Recommended MAAB YES

na_0009: Entry versus propagation of signal labels Strongly recommended MAAB YES

na_0010: Grouping data flows into signals Strongly recommended MAAB YES

na_0011: Scope of Goto and From blocks Strongly recommended MAAB YES

na_0012: Use of Switch vs. If-Then-Else Action Subsystem Strongly recommended MAAB NO

na_0013: Comparison operation in Stateflow Recommended MAAB NO

5

5.4 Subsystem Masking Methods and Guidelines

The following document outlines methods and guidelines of masking a subsystem block with its

representative equation and provides examples for getting started. It also briefly summarizes the

masking requirements as defined by the Orion Modeling Standards document.

Masking a Subsystem:

To mask a subsystem block, right click the block and select “Mask Subsystem” from the menu. The

following dialog appears:

- The following Option should be set:

o Icon Units = “Normalized” (scales text positions as normalized values when the

block is resized)

- As per the modeling standards, mask dialogs and therefore mask parameters (on the

“Parameter” tab) are not allowed. Only change settings on the “Icon & Ports” tab

6

- All further mask settings are made by calling functions from within the “Icon Drawing

Commands” pane.

- To make changes to a mask after the dialog is closed, right click the block and select “Edit

Mask” from the menu.

Displaying text:

Use Matlab‟s disp() function to center a single line of text on the mask.

- Example:
o disp('Y = MX + B','texmode','on')

- Use “disp” function for masks whose equation occupies a single line. “disp”

automatically centers its text string on the subsystem.

- “disp” does not permit multiple lines to be displayed. To display multiple lines, use

text()

Use Matlab‟s text() function to display multiple lines of text on the mask.

- Example:
o text(.3,.6,'Y = MX+B','texmode','on')

o text(.3,.4,'M = 1','texmode','on')

- The “text” function requires x & y positions as the first two arguments. To display

multiple lines, call text() once for each line, giving each call different position

coordinates.

- Set “Icon Units” equal to “Normalized” in the left hand Options pane of the mask editor

in order to make the position values scale as normalized values when the block is

resized.

Labeling a Port:

Once a block is masked, the underlying port names will no longer be displayed on the subsystem.

To enhance readability and understandability, the inputs and the outputs of the subsystem model

should be labeled to match variables in its function. Matlab‟s port_label() function permits this.

7

Note: The port label function permits the use of TeX commands to label a port with a symbol. If

you choose not to label the port with its representative symbol, then it is suggested to label the port

with the same name as the underlying inport/outport for consistency.

- Extend the previous example by adding the following lines:
o port_label('input',1,'X','texmode','on')

o port_label('output',1,'Y','texmode','on')

Using TeX commands:

The previous examples set the “texmode” parameter to “on”; however, they did not make use of

TeX commands within the text string. From the Matlab Help documentation:

“When the text Interpreter property is Tex (the default), you can use a subset of TeX

commands embedded in the string to produce special characters such as Greek letters and

mathematical symbols.” 2

 The following example shows how to set the mask‟s text and port labels to bold and 14 point font

using TeX commands:

port_label('input',1,'\bf\fontsize{14}X','texmode','on')
port_label('output',1,'\bf\fontsize{14}Y','texmode','on')

disp('\bf\fontsize{14}Y = MX + B','texmode','on')

Note:

- The „\‟ character indicates an embedded TeX command to Matlab‟s TeX interpreter

- All mask disp() and text() strings should be boldface and 14 point font for readability.

- There are many more TeX commands supported by Matlab‟s TeX interpreter, search the

help file for “TeX Character Sequence Table” for a table of supported commands, or see the

Appendix in this document.

Advanced TeX Example:

8

port_label('input',1,'I','texmode','on')
port_label('input',2,'F','texmode','on')
port_label('input',3,'\Delta *t','texmode','on')
port_label('output',1,'\Phi','texmode','on')
text(.26,.7,'\bf \fontsize{14}\Phi \approx I + F\Deltat + .5F^2

\Deltat^2','texmode','on')
text(.15,.3,'\bf \fontsize{14}I - \Phi^{-1} \approx F\Deltat -

.5F^2\Deltat^2','texmode','on')

Note – The Matlab TeX interpreter does not recognize TeX numerator/denominator commands for

representing fractions.

Reference:

1 - Summary of Requirements

- Mask dialogs are not allowed, therefore creating mask parameters is not allowed (because

they automatically create mask dialogs)

- Port Labeling commands are to be grouped together ahead of Disp() or Text() commands in

the Icon Drawing Commands pane

- All mask disp() and text() strings are to be bold and 14 point font; port labels can be left at

their default settings

- All ports are to be labeled with their representative symbol or underlying port name

- Set option Icon Units = “Normalized”

2 - MathWorks – Matlab TeX Character Sequence Table

http://www.mathworks.com/help/techdoc/ref/text_props.html#String

Character Sequence Symbol Character Sequence Symbol Character Sequence Symbol

\alpha
α

\upsilon
ς

\sim
~

\angle
∠

\phi
Φ

\leq
≤

\ast * \chi
σ

\infty
∞

\beta
β

\psi
τ

\clubsuit
♣

http://www.mathworks.com/help/techdoc/ref/text_props.html#String

9

Character Sequence Symbol Character Sequence Symbol Character Sequence Symbol

\gamma
γ

\omega
υ

\diamondsuit
♦

\delta
δ

\Gamma
Γ

\heartsuit
♥

\epsilon
ɛ

\Delta
Δ

\spadesuit
♠

\zeta
δ

\Theta
Θ

\leftrightarrow
↔

\eta
ε

\Lambda
Λ

\leftarrow
←

\theta
Θ

\Xi
Ξ

\Leftarrow
⇐

\vartheta
ϑ

\Pi
Π

\uparrow
↑

\iota
ι

\Sigma
Σ

\rightarrow
→

\kappa
κ

\Upsilon
ϒ

\Rightarrow
⇒

\lambda
λ

\Phi
Φ

\downarrow
↓

\mu
µ

\Psi
Ψ

\circ
º

\nu
ν

\Omega
Ω

\pm
±

\xi
ξ

\forall
∀

\geq
≥

\pi
π

\exists
∃

\propto
∝

\rho
π

\ni
∍

\partial
∂

\sigma
σ

\cong
≅

\bullet
•

\varsigma
ρ

\approx
≈

\div
÷

\tau
τ

\Re
ℜ

\neq
≠

\equiv
≡

\oplus
⊕

\aleph
ℵ

10

Character Sequence Symbol Character Sequence Symbol Character Sequence Symbol

\Im
ℑ

\cup
∪

\wp
℘

\otimes
⊗

\subseteq
⊆

\oslash
∅

\cap
∩

\in
∈

\supseteq
⊇

\supset
⊃

\lceil
⌈

\subset
⊂

\int
∫

\cdot
·

\o
ο

\rfloor
⌋

\neg
¬

\nabla
∇

\lfloor
⌊

\times
x

\ldots
...

\perp
⊥

\surd
√

\prime
´

\wedge
∧

\varpi
ϖ \0 ∅

\rceil
⌉

\rangle
〉

\mid
|

\vee
∨

 \copyright
©

\langle
〈

