
 CEV Flight Dynamics Team

To: Distribution Document Number: FltDyn-CEV-08-148

From: Joel Henry - ORION GN&C Software Functional Manager

Subject: Orion GN&C MATLAB/Simulink Standards (SIA Action #2)

Date: October 1
st
, 2011

Executive Summary

This document satisfies Action #2 of the GN&C Flight Software (FSW) Structured Improvement

Activity (SIA) project and represents the efforts of the MATLAB/Simulink standards splinter

group formed soon after the SIA event.

The MATLAB/Simulink standards splinter group was tasked to define an initial version of the

MATLAB/Simulink guidelines and standards. These standards and guidelines are to be used in

the GN&C Flight Software (FSW) algorithm development effort by each of the GN&C MODE

teams.

 (Signature of Author)

Joel Henry

ORION GN&C Software Functional Manager

NASA/JSC

ii

Orion GN&C

MATLAB/Simulink Standards

Version 15

October 1
st
, 2011GN&C Structured Improvement Activity/LM21 Project Team

iii

REVISION HISTORY

Ver. Date Originator Description
0.0 07/19/08 CSDL/Ian T. Mitchell

1.0 09/02/08 CSDL/Ian T. Mitchell Added memo format.

2.0 11/03/08 CSDL/Ian T. Mitchell Feedback from splinter group.

3.0 12/03/08 CSDL/Ian T. Mitchell Splinter group review.

4.0 04/09/09 CSDL/Joel Henry Further splinter group review and feedback from the Entry Pathfinder

project

5.0 04/15/09 CSDL/Joel Henry Minor corrections

6.0 4/30/2009 CSDL/Joel Henry Added ORION specific naming standards for models, m-files, and root-

level buses

7.0 7/15/2009 CSDL/Joel Henry Minor corrections and clarifications

8.0 11/17/2009 CSDL/Joel Henry Added/modified standards based on lessons learned from the

Entry/Orbit/Ascent Translation process

9.0 11/1/2010 NASA/Joel Henry ÅAdded MA Check field to every standard to indicate whether an

automated Model Advisor check exists for this standard

Updated the following standards:

¶ jh_0070: Model Configuration Settings

¶ jh_0109: Merge Blocks

¶ jh_0042: Required Software

Added the following standards

¶ mj_0001: CSU Input Bus Naming

¶ jh_0111: Bus Ordering and Alignment

¶ jh_0117: Shared CSUs Across Domains

¶ jr_0001: Use of Atomic functions for Subsystems

¶ mj_0002: Junction Box Composition

¶ jy_0010: Graphical Functions

¶ jr_0002: Number of nested if/for statement blocks

Removed the following standards

¶ db_1037: States in state machines

10.0 NASA/Joel Henry Added the following standards

¶ dm_0001: Signal and Bus Element Naming Convention

Updated the following standards:

¶ jh_0006: Setup files for bus initialization

¶ hyl_0204: Standard Units

11.0 NASA/Joel Henry Updated the following standards:

¶ dm_0001: Signal and Bus Element Naming Convention

12.0 4/11/2011 LM/David Shoemaker

NASA/Joel Henry

Added the following standards

¶ jph_0010: Use of Masks

Updated the following Standards:

¶ dm_0002: Enumerated Types Usage

¶ dm_0003: Enumerated Types Header Files

¶ dm_0004: Enumerated Types RTW Settings

¶ dm_0005: Enumerated Types Description

¶ jr_0003: Enumeration Name Convention

¶ ek_0002: Recursive Functions (changed to mandatory)

Removed the following standards

¶ jh_0055: Use of Masks (replaced with jph_0010)

13.0 5/5/2011 NASA/Joel Henry Added the following standards

¶ jh_0202: Testable Unit

¶ jh_0200: Guidelines for Managing Model Complexity

iv

¶ jh_0201: eML Function Types

¶ jr_0004: Error Handling

Removed the following standards

¶ hyl_0206: Only Boolean inputs to encoder blocks

¶ jr_0001: Use of Atomic Functions for Subsystems

¶ jh_0001: Use of ARINC blocks for partition to partition data flow

¶ jh_0005: Setup files for model parameter initialization

¶ jh_0006: Setup files for bus initialization

¶ bd_0137: States in state machines

¶ jy_0010: Graphical Functions

¶ hyl_0208: Prevention of divide-by-zero

¶ hyl_0209: Prevention of negative square root

¶ hyl_0203: Model Publishing

¶ jh_0011: Model release

Updated the following Standards:

¶ jh_0042: Required Software

¶ jh_0079: Model and Matlab Filenames

¶ na_0004: Simulink model appearance

¶ na_0004: Port block name visibility in Simulink models

¶ jm_0010: Port block names in Simulink models

¶ dm_0001: Signal and Bus Element Naming Convention

¶ hyl_0301: Block naming convention

¶ db_0112: Indexing

¶ db_0144: Use of Subsystems

¶ jh_0049: Use of Model References or Reusable Subsystems

¶ jph_0010: Use of Masks

¶ na_0012: Use of Switch vs. Case vs. If-Then-Else Action

Subsystem

¶ db_0116: Simulink patterns for logical constructs with logical

blocks

¶ jr_0001: Enumeration Name Convention

¶ na_0006: Guidelines for mixed use of Simulink and Stateflow

¶ na_0007: Guidelines for use of Flow Charts, Truth Tables and State

Machines

¶ im_0001: Guidelines for mixed use of Simulink and eML

¶ im_0008: Source lines of eML

¶ im_0009: Number of called function levels

¶ jh_0110: eML Function Reuse

¶ jh_0029: m-files

¶ jh_0030: Extrinsic function

¶ jh_0073: eML Header

¶ Modeling Guidelines Chart

14.0 9/1/2011 NASA/Joel Henry Added the following standards

¶ jh_0050: Model References Simulation Mode

¶ jh_0052: Directory Structure

Updated the following Standards:

¶ dm_0001: Signal and Bus Element Naming Convention

¶ jc_0141: Use of Switch block

¶ jh_0021: Restricted Variable Names

15.0 10/1/2010 NASA/Joel Henry Added the following standards

¶ do_0001: Declaring Local Variables in eml

Updated the following Standards:

¶ jh_0064: eML if statement

v

TABLE OF CONTENTS

TABLES .. viii
ABBREVIATIONS AND ACRONYMS .. viii

1 INTRODUCTION .. 1
2 RELATED DOCUMENTATION.. 1
2.1 Applicable Documents .. 1
2.2 Information Documents .. 1
3 PURPOSE AND DESCRIPTION .. 1

4 STANDARDS .. 2
4.1 System Requirements .. 2

4.1.1 jh_0042: Required Software .. 2
4.1.2 jh_0043: Approved Platforms .. 3

4.2 File and Directory Naming Conventions ... 3
4.2.1 ar_0001: Filenames ... 3
4.2.2 jh_0079: Model and Matlab Filenames ... 4
4.2.3 ar_0002: Directory names ... 5
4.2.4 jh_0052: Directory Structure ... 6

4.3 Simulink... 6
4.3.1 Diagram Appearance ... 6

4.3.1.1 na_0004: Simulink model appearance.. 6
4.3.1.2 jh_0007: Blocks in a model ... 7
4.3.1.3 db_0043: Simulink font and font size .. 8
4.3.1.4 hyl_0103: Model color coding ... 9

4.3.2 Model Configuration Options .. 10
4.3.2.1 jh_0070: Model Configuration Settings ... 10

4.3.3 Model Documentation.. 10
4.3.3.1 hyl_0112: Title on each page ... 10
4.3.3.2 hyl_0113: Notes on each page ... 11
4.3.3.3 hyl_0202: Use of revision/trace block .. 12
4.3.3.4 hyl_0114: Documentation of deviations to standards... 13

4.3.4 Inports and Outports .. 14
4.3.4.1 jc_0211: Usable characters for Inport block and Outport block ... 14
4.3.4.2 mdb_0042: Port block in Simulink models .. 14
4.3.4.3 na_0005: Port block name visibility in Simulink models ... 15
4.3.4.4 jc_0081: Icon display for Port block .. 16
4.3.4.5 jm_0010: Port block names in Simulink models .. 17
4.3.4.6 jh_0018: Variable type casting ... 17

4.3.5 Signals and Buses .. 18
4.3.5.1 jc_0221: Usable characters for signal line name .. 18
4.3.5.2 jh_0040: Usable characters for Simulink Bus names ... 19
4.3.5.3 bn_0002: Signal name length limit .. 20
4.3.5.4 jh_0041: Simulink Bus Name Length Limit .. 20
4.3.5.5 jh_0051: Simulink Bus Format .. 21
4.3.5.6 dm_0001: Signal and Bus Element Naming Convention ... 24
4.3.5.7 mj_0001: CSU Input Bus Naming ... 24
4.3.5.8 jh_0111: Bus Ordering and Alignment .. 26
4.3.5.9 jh_0117: Shared CSUs Across Domains .. 27
4.3.5.10 na_0010: Grouping data flows into signals ... 28
4.3.5.11 na_0009: Entry versus propagation of signal labels ... 30
4.3.5.12 hyl_0311: Naming of signals passed through multiple subsystems ... 31
4.3.5.13 na_0008: Display of labels on signals.. 32
4.3.5.14 db_0097: Position of labels for signals and buses.. 33
4.3.5.15 hyl_0110: Branching line format ... 34
4.3.5.16 mdb_0032: Simulink signal appearance .. 35
4.3.5.17 db_0081: Unconnected signals, block inputs and block outputs .. 35
4.3.5.18 jh_0061: Use of Parameters ... 36

4.3.6 Blocks ... 37
4.3.6.1 hyl_0302: Usable characters for Block Names .. 37

vi

4.3.6.2 hyl_0305: Block name uniqueness ... 38
4.3.6.3 hyl_0309: Block name usage ... 39
4.3.6.4 jh_0062: Constant Block Naming .. 39
4.3.6.5 jm_0002: Block resizing .. 40
4.3.6.6 db_0142: Position of block names ... 40
4.3.6.7 jc_0061: Display of block names ... 41
4.3.6.8 db_0140: Display of basic block parameters .. 42
4.3.6.9 mdb_0141: Signal flow in Simulink models .. 43
4.3.6.10 jc_0171: Maintaining signal flow when using Goto and From blocks ... 43
4.3.6.11 jc_0281: Naming of Trigger Port block and Enable Port block ... 44

4.3.7 Block Usage ... 45
4.3.7.1 hyl_0201: Use of standard library blocks only ... 45
4.3.7.2 jh_0101: Use of Right-Handed Quaternions only .. 46
4.3.7.3 na_0003: Simple logical expressions in If Condition block ... 46
4.3.7.4 na_0002: Appropriate implementation of fundamental logical and numerical operations 48
4.3.7.5 na_0011: Scope of Goto and From blocks ... 49
4.3.7.6 jc_0141: Use of the Switch block... 50
4.3.7.7 hyl_0207: Limiting input to multiport switches ... 52
4.3.7.8 jc_0121: Use of the Sum block .. 52
4.3.7.9 jc_0131: Use of Relational Operator block .. 54
4.3.7.10 hyl_0211: Prohibit use of test points ... 54
4.3.7.11 jh_0109: Merge Blocks .. 55
4.3.7.12 mjc_0111: Direction of Subsystem .. 55

4.3.8 Block Parameters ... 56
4.3.8.1 db_0112: Indexing ... 56
4.3.8.2 db_0110: Tunable parameters in basic blocks .. 58

4.3.9 Subsystems ... 59
4.3.9.1 jc_0201: Usable Characters for Subsystem Names .. 59
4.3.9.2 bn_0001 Subsystem name length limit .. 60
4.3.9.3 hyl_0307: Use of subsystem name ... 60
4.3.9.4 db_0144: Use of Subsystems ... 61
4.3.9.5 jh_0049: Use of Model References or Reusable Subsystems ... 61
4.3.9.6 jh_0050: Model References Simulation Mode ... 63
4.3.9.7 db_0146: Triggered, enabled, conditional Subsystems .. 65
4.3.9.8 jph_0010: Use of Masks ... 66
4.3.9.9 hyl_0308: Use of reference model name .. 68

4.3.10 Subsystem Patterns .. 69
4.3.10.1 na_0012: Use of Switch vs. Case vs. If-Then-Else Action Subsystem .. 69
4.3.10.2 db_0114: Simulink patterns for If-then-else-if constructs.. 72
4.3.10.3 db_0115: Simulink patterns for case constructs ... 73
4.3.10.4 bn_0003: Use of If-Then-Else Action Subsystem to Replace Multiple Switches .. 75
4.3.10.5 db_0116: Simulink patterns for logical constructs with logical blocks .. 77
4.3.10.6 db_0117: Simulink patterns for vector signals ... 78
4.3.10.7 jc_0351: Methods of initialization ... 80

4.3.11 Enumerations ... 82
4.3.11.1 dm_0002: Enumerated Types Usage ... 82
4.3.11.2 dm_0003: Enumerated Types Header Files ... 82
4.3.11.3 dm_0004: Enumerated Types RTW Settings ... 83
4.3.11.4 dm_0005: Enumerated Types Description ... 83
4.3.11.5 jr_0003: Enumeration Name Convention .. 84

4.4 Model Architecture .. 85
4.4.1 Simulink

®
, eML, and Stateflow

®
 Partitioning .. 85

4.4.1.1 jh_0202: Testable Units ... 85
4.4.1.2 na_0006: Guidelines for mixed use of Simulink and Stateflow ... 88
4.4.1.3 na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines .. 93
4.4.1.4 im_0001: Guidelines for mixed use of Simulink and eML .. 93
4.4.1.5 jh_0200: Guidelines for Managing Model Complexity .. 96
4.4.1.6 ek_0010: Simulink algorithm States recommendations .. 97

4.4.2 Subsystem Hierarchies ... 98
4.4.2.1 mdb_0143: Similar block types on the model levels .. 98

4.4.3 ORION GN&C Model Architecture Decomposition .. 99
4.4.3.1 im_0015: ORION GN&C Model Architecture .. 99
4.4.3.2 im_0003: Controller model .. 100

vii

4.4.3.3 im_0004: Top layer / root level .. 101
4.4.3.4 im_0005: Trigger layer .. 101
4.4.3.5 im_0006: Structure layer .. 102
4.4.3.6 mj_0002: Junction Box Composition ... 103
4.4.3.7 im_0007: Data flow layer ... 104
4.4.3.8 jh_0056: Sample Times.. 105

4.5 Stateflow .. 106
4.5.1 Chart Appearance .. 106

4.5.1.1 db_0123: Stateflow port names .. 106
4.5.1.2 db_0129: Stateflow transition appearance .. 106
4.5.1.3 db_0133: Use of patterns for Flowcharts ... 107
4.5.1.4 db_0132: Transitions in Flowcharts ... 108
4.5.1.5 mjc_0501: Format of entries in a State block ... 109
4.5.1.6 jc_0511: Setting the return value from a graphical function .. 110
4.5.1.7 jc_0531: Placement of the default transition .. 111
4.5.1.8 jc_0521: Use of the return value from graphical functions .. 112

4.5.2 Stateflow data and operations ... 113
4.5.2.1 na_0001: Bitwise Stateflow operators .. 113
4.5.2.2 jc_0451: Use of unary minus on unsigned integers in Stateflow .. 114
4.5.2.3 na_0013: Comparison operation in Stateflow .. 115
4.5.2.4 db_0122: Stateflow and Simulink interface signals and parameters .. 116
4.5.2.5 db_0125: Scope of internal signals and local auxiliary variables ... 117
4.5.2.6 jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow 117
4.5.2.7 jc_0491: Reuse of variables within a single Stateflow scope ... 118
4.5.2.8 jc_0541: Use of tunable parameters in Stateflow ... 120
4.5.2.9 db_0127: MATLAB commands in Stateflow .. 120
4.5.2.10 jm_0011: Pointers in Stateflow .. 121

4.5.3 Events ... 121
4.5.3.1 db_0126: Scope of events .. 121
4.5.3.2 jm_0012: Event broadcasts .. 122

4.5.4 Statechart Patterns .. 123
4.5.4.1 db_0150: State machine patterns for conditions ... 123
4.5.4.2 db_0151: State machine patterns for transition actions .. 124

4.5.5 Flowchart Patterns .. 125
4.5.5.1 db_0148: Flowchart patterns for conditions ... 125
4.5.5.2 db_0149: Flowchart patterns for condition actions ... 127
4.5.5.3 db_0134: Flowchart patterns for If constructs .. 128
4.5.5.4 db_0159: Flowchart patterns for case constructs ... 130
4.5.5.5 db_0135: Flowchart patterns for loop constructs ... 131

4.6 Embedded MATLAB (eML) ... 133
4.6.1 jh_0201: eML Function Types .. 133
4.6.2 im_0008: Source lines of eML .. 136
4.6.3 im_0009: Number of called function levels .. 137
4.6.4 jr_0002: Number of nested if/for statement blocks ... 137
4.6.5 jh_0110: eML Function Reuse .. 138
4.6.6 im_0010: Number of inline function calls... 139
4.6.7 jh_0063: eML block input/output settings .. 139
4.6.8 jh_0021: Restricted Variable Names .. 140
4.6.9 jh_0064: eML if statement .. 140
4.6.10 jh_0023: Arrays .. 141
4.6.11 jh_0024: Strings .. 142
4.6.12 jh_0025: Structures... 143
4.6.13 jh_0026: Switch/case statements .. 143
4.6.14 jh_0027: Multiple Code Paths .. 144
4.6.15 jh_0029: m-files .. 146
4.6.16 jh_0030: Extrinsic function... 146
4.6.17 ek_0002: Recursive functions ... 146
4.6.18 ek_0003: Global Variables ... 147
4.6.19 jh_0073: eML Header ... 148
4.6.20 jh_0093: Parameter Bus for eML ... 149
4.6.21 jh_0084: eML Comments .. 149

viii

4.6.22 do_0001: Declaring Local Variables in eML ... 149
4.7 Code Development Standards ... 150

4.7.1 hyl_0204: Standard units ... 150
4.7.2 jr_0004: Error Handling ... 152

4.8 Configuration Management ... 152
4.8.1 jh_0004: MATLAB artifacts under configuration control .. 152

5 Appendix .. 1
5.1 Modeling Guidelines Chart ... 1
5.2 Configuration Settings ... 1

5.3 Model Advisor Standards Checks Summary ... 1
5.4 Subsystem Masking Methods and Guidelines ... 5

TABLES
Table 1 - Applicable Documents .. 1

Table 2 - Information Documents ... 1

ABBREVIATIONS AND ACRONYMS

CEV Crew Exploration Vehicle

FDT Flight Dynamics Team

FSW Flight Software

GN&C Guidance, Navigation and Control

UML Unified Modeling Language

CSU Computer Software Unit

PSP Pilot Support Package

MAAB Mathworks Automotive Advisory Board

SDP Software Development Plan

eML Embedded Matlab

ARINC Avionics Application Standard Software Interface

SDK Software Development Kit

MRB Model Reference Block

V&V Verification and Validation

1 INTRODUCTION

This document describes the standards and guidelines that the Orion Crew Exploration Vehicle

(CEV) Flight Dynamics Team (FDT) will use while developing the Guidance, Navigation and

Control (GN&C) algorithms in the MATLAB/Simulink environment.

The GN&C algorithms developed in this manner will be delivered to the Flight Software (FSW)

team and C++ source code will be auto-generated and integrated with other flight software

components.

This standards and guidelines document has been developed using the Mathworks Automotive

Advisory Board (MAAB) guidelines document as a starting point with additions from the joint

Orion NASA/Contractor team.

2 RELATED DOCUMENTATION

2.1 Applicable Documents

This document is a child document to the Orion GN&C Algorithm Development Plan, which

specifies the overall plan for FDT development, testing and delivery of GN&C algorithms.

Table 1 lists the documents applicable to this MATLAB Standards document.

Table 1 - Applicable Documents

Reference No. Title

 Control Algorithm Modeling Guidelines Using MATLAB®, Simulink®,

and Stateflow®, Version 2.0, MathWorks Automotive Advisory Board

(MAAB), July 27, 2007

CEV-GNC-11-014 GNC Model Development Cyclomatic Complexity Guidelines Memo

FltDyn-CEV-11-52 Error Handling and Logging Guidance

2.2 Information Documents
Table 2 - Information Documents

Reference No. Title

LM CEV-T-005 LM Software Development Plan (SDP)

3 PURPOSE AND DESCRIPTION

The purpose of this document is to define standards and guidelines for how the FDT will implement

and model their GN&C algorithms in the MATLAB/Simulink environment. Such standards will

foster consistency across all of the FDTôs five mode teams (Ascent Abort, Orbit, Entry, Navigation

and Integrated GN&C), and provide for tighter cohesion in the GN&C design, improve readability

and interpretation, and ultimately expedite module integration and testing.

2

The Priority field in each of the standards indicates the importance. The three priority types are

Mandatory, Strongly Recommended, and Recommended. The descriptions of each of these types

are below:

o Mandatory ï flagged in inspection, must be fixed before any release (no schedule

relief, ñshallò)

o Strongly Recommended, flagged in inspection, should be high-priority to fixing

before release, but ïif resource limited ï could be released in engineering releases,

but must be fixed prior to flight (i.e., there may be some schedule relief for fixing

this, is a ñshallñ) and required approval for acceptance.

o Recommended ï flagged in inspection, not required fixed before release or flight.

(ñnice to haveò, or ñguidelineò, a ñshouldò)

4 STANDARDS

4.1 System Requirements

4.1.1 jh_0042: Required Software

ID: Title jh_0042: Required Software

Priority Mandatory

Scope ORION

MATLAB

Version
See Description/Version

MA Check No

Prerequisites None

Description

The minimum required software for use with the ORION GN&C FSW models is as

follows:

The use of blocks from Simulink toolboxes are prohibited for CSU development.

Description Software Version

Minimum Required for

Simulation at CSU level

Matlab

Simulink

Stateflow

C++ Compiler (ex. Visual Studio C++ 2008

for Win32)

2010b SP1

2010b SP1

2010b SP1

Minimum Required for

Simulation at Domain

Level

Those listed above

ARINC PSP (Pilot Support Package)

2.1

Required for Code

Generation

Real-Time Workshop

Real-time Workshop Embedded Coder

2010b SP1

2010b SP1

3

Stateflow Coder

Trick PSP

Microsoft SDK (needed for ARINC PSP on

Win32)

2010b SP1

1.8

6.1 or later

Required for Advanced

Model Analysis

Simulink Verification and Validation

2010b SP1

Required for Running

Unit Tests

System Test 2010b SP1

Rationale

X Readability

X Workflow

X Simulation

X Verification and Validation

X Code Generation

Last Change V1.3

4.1.2 jh_0043: Approved Platforms

ID: Title jh_0043: Approved Platforms

Priority Mandatory

Scope ORION

MATLAB

Version
2010b

MA Check No

Prerequisites None

Description

The supported OS environments are listed below:

Windows 32-bit

Linux 32-bit

Environments other than these are not compatible with the PSPs (Pilot Support

Packages) and the USA S-function utilities

Rationale

X Readability

X Workflow

X Simulation

X Verification and Validation

X Code Generation

Last Change V1.1

4.2 File and Directory Naming Conventions

4.2.1 ar_0001: Filenames

ID: Title ar_0001: Filenames

Priority Mandatory

Scope MAAB

MATLAB All

4

Version

MA Check Yes

Prerequisites None

Description

A filename conforms to the following constraints:

FORM filename = name.extension

name: no leading digits, no blanks

extension: no blanks

UNIQUENESS all filenames within the parent project directory

ALLOWED

CHARACTERS
name
a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G

H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 _

extension:

a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G

H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9

UNDERSCORES name:

¶ can use underscores to separate parts

¶ cannot have more than one consecutive underscore

¶ cannot start with an underscore

¶ cannot end with an underscore

extension:

¶ should not use underscores

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V1.0

4.2.2 jh_0079: Model and Matlab Filenames

ID: Title jh_0079: Model and Matlab Filenames

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The file names for the Simulink model files and embedded Matlab script files must

conform to the following guidelines:

CSU Simulink

model name <3 letter Domain abb.>_<CSU abb.>_CSU.mdl

Eml functions <3 letter Domain abb.>_<CSU abb.>_<function name>.m

5

stored as separate

*.m files

*Note: ALL separately stored *.m files (a.k.a ñdot-Mò files)

must have the eml.inline(óneverô); declaration (described in

jh_0202: Testable Unit)

ñModel referenceò

model used once

within a single

CSU

<3 letter Domain abb.>_<CSU abb.>_<function name>_MR.mdl

ñModel referenceò

model used

multiple times

within a single

CSU

<3 letter Domain abb.>_<CSU abb.>_<function name>_MR.mdl

ñModel referenceò

model used within

multiple CSUs in

single Domain

<3 letter Domain abb.>_<abb of the CSU source>_<function name>_MR.mdl

*one of the CSUs will be the main source of the model ï this is the CSU abb to

use in the naming

ñModel referenceò

model used within

a multiple CSUs in

multiple Domains

GNCLib_<function name>.mdl

*this model must reside in the GNC Shared Model Library

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V1.1

4.2.3 ar_0002: Directory names

ID: Title ar_0002: Directory names

Priority Mandatory

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

A directory name conforms to the following constraints:

FORM directory name = name

name: no leading digits, no blanks

UNIQUENESS all directory names within the parent project directory

ALLOWED

CHARACTERS

name:

 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G

H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 _

UNDERSCORES name:

6

¶ can use underscores to separate parts

¶ cannot have more than one consecutive underscore

¶ cannot start with an underscore

¶ cannot end with an underscore

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V1.0

4.2.4 jh_0052: Directory Structure

ID: Title jh_0052: Directory Structure

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites ar_0002: Directory Names

Description

The directory structure for the ORION project shall mimic the example below:

Junction Box models should be placed in the following directory:

<3 Letter Domain> / <JBox_Name>.mdl

CSUs should be placed in the following directory:

<3 Letter Domain> / <CSU Name> / <CSU_Name>.mdl

CSU Memos should be placed in the following directory:

<3 Letter Domain> / <CSU Name> / Memo

Unit Tests should be placed in the following directory:

<3 Letter Domain> / <CSU Name> / Unit_Tests

Rationale

Ã Readability

X Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V1.0

4.3 Simulink

4.3.1 Diagram Appearance

4.3.1.1 na_0004: Simulink model appearance

ID: Title na_0004 Simulink model appearance

7

Priority Recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

The model appearance settings should conform to the following guidelines when

the model is released. The user is free to change the settings during the

development process.

Note: The CSU_template.mdl file, included in the ORION Library, has the

recommended settings in place.

View Options Setting

Model Browser unchecked

Screen color white

Status Bar checked

Toolbar checked

Zoom factor Normal (100%)

Block Display Options Setting

Background Color white

Foreground Color black

Execution Context Indicator unchecked

Library Link Display none

Linearization Indicators checked

Model/Block I/O Mismatch unchecked

Model Block Version unchecked

Sample Time Colors none

Sorted Order unchecked

Signal Display Options Setting

Port Data Types unchecked

Signal Dimensions unchecked

Storage Class unchecked

Test point Indicators checked

Viewer Indicators checked

Wide Non-scalar Lines checked

Simulation Setting

Simulation Mode Normal

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.2

4.3.1.2 jh_0007: Blocks in a model

8

ID: Title jh_0007: Blocks in a model

Priority Recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Each layer of a model must be printable and readable on 11x17 size paper.

The use of the CSU_template.mdl file and the ORION library will enforce this

standard using borders.

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V1.2

4.3.1.3 db_0043: Simulink font and font size

ID: Title db_0043: Simulink font and font size

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites jh_0007: Blocks in a Model

Description

All text elements (block names, block annotations and signal labels) except free text

annotations within a model must have the same font style and font size. Fonts and

font size should be selected for legibility.

Note: The ORION Library blocks adhere to this standard and do not need to be

changed.

Note: The selected font should be directly portable (e.g. Simulink/Stateflow default

font) or convertible between platforms (e.g. Arial/Helvetica 12pt).

Note: The CSU_template.mdl file, included in the ORION Library, has a Title text

box and Description text box that are of the recommended format.

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.1

9

4.3.1.4 hyl_0103: Model color coding

ID: Title hyl_0103: Model color coding

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

The background color shall be set to:

a) Light blue for subsystems blocks

b) Orange for referenced models

c) Cyan for inport and outport blocks

d) Yellow for From, Goto, and Goto Visibility tags

e) Red for non-ORION Library blocks

 (Colorspec RGB value = [1.000000, 0.501961, 0.501961])

f) White for Library blocks

g) Gray for Embedded Matlab Blocks

h) Light Brown for Domain level blocks (non-CSU)

 (Colorspec RGB value = [0.792157, 0.772549, 0.725490])

Note: The blocks in the ORION Library are set to the required background color

Example:

Rationale

X Readability

Ã Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.1

10

4.3.2 Model Configuration Options

The model configuration options should be set to those indicated in the Appendix 5.1.

4.3.2.1 jh_0070: Model Configuration Settings

ID: Title jh_0070: Model Configuration Settings

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Each CSU must have the model configuration settings set to the configuration object

specified below ï which are included in the latest version of the ORION Library.

CSUs: set to CSUCfgSet or CSUCfgSetMR

Junction Boxes: set to JBoxCfgSet

Domains and above: EmptyBoxCfgSet

Note: These settings will ensure consistency and compatibility across all CSUs and

allow proper generation of autocode.

Note: The ORION Library includes the CSUCfgSet which is a configuration object

that complies with all of these settings. Also, the CSU_template model included in

the ORION Library uses this config file.

Rationale

Ã Readability

Ã Workflow

X Simulation

Ã Verification and Validation

X Code Generation

Last Change V1.1

4.3.3 Model Documentation

4.3.3.1 hyl_0112: Title on each page

ID: Title hyl_0112: Title on each page

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

11

Description

Each page shall have a title. This allows pages to be easily identified when printed.

Example:

Note: The title will not transfer to the autocode

Rationale

X Readability

Ã Workflow

Ã Simulation

X Verification and Validation

Ã Code Generation

Last Change V2.1

4.3.3.2 hyl_0113: Notes on each page

ID: Title hyl_0113: Notes on each page

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description At least one note should be placed on each page explaining the function contained on

that page. Additional notes should be placed on the page as needed. The goal is to

12

document each page with the rationale, assumptions, and intent of the design. The

notes should not contain algorithms. Instead, references should be made in the notes

to the algorithm specification.

Comments should not be index specific because the index used in the autocode may

differ.

Example:

Note: The notes will not transfer to the autocode

Rationale

X Readability

Ã Workflow

Ã Simulation

X Verification and Validation

Ã Code Generation

Last Change V2.0

4.3.3.3 hyl_0202: Use of revision/trace block

ID: Title hyl_0202: Use of revision/trace block

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

13

Prerequisites None

Description

Each model shall have a revision block that maintains a unique identification trace

tag, a version number which matches the version in the Configuration Management

system, modification date, and author.

This block is included in the ORION library as the Model_Info block. It contains

the following info:

¶ Author

¶ Date Modified

¶ Version and Instance (controlled by the CM Synergy database)

¶ CSU name

¶ Current System Name

¶ Parent system Name

This block is automatically included in the CSU_template.mdl and in all new

subsystems from the ORION Library.

Example:

Rationale

Ã Readability

X Workflow

Ã Simulation

X Verification and Validation

X Code Generation

Last Change V2.2

4.3.3.4 hyl_0114: Documentation of deviations to standards

ID: Title hyl_0114: Documentation of deviations to standards

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites hyl_0113: Notes on each page

Description Any deviations from the standards shall be documented in the notes.

Rationale

X Readability

X Workflow

Ã Simulation

X Verification and Validation

Ã Code Generation

Last Change V2.0

14

4.3.4 Inports and Outports

4.3.4.1 jc_0211: Usable characters for Inport block and Outport block

ID: Title jc_0211: Usable characters for Inport block and Outport block

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

The names of all Inport blocks and Outport blocks should conform to the following

constraints:

FORM name:

¶ should not start with a number

¶ should not have blank spaces

¶ carriage returns are not allowed

ALLOWED

CHARACTERS

name:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 _

UNDERSCORES name:

¶ can use underscores to separate parts

¶ cannot have more than one consecutive underscore

¶ cannot start with an underscore

¶ cannot end with an underscore

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

X Code Generation

Last Change V2.1

4.3.4.2 mdb_0042: Port block in Simulink models

ID: Title mdb_0042: Port block in Simulink models

Priority Strongly recommended

Scope ORION (modified MAAB db_0042)

MATLAB

Version
All

MA Check No

15

Prerequisites None

Description

In a Simulink model, the ports comply with the following rules:

¶ Inports should be placed on the left side of the diagram, but they can be moved

in to prevent signal crossings.

¶ Outports should be placed on the right side, but they can be moved in to

prevent signal crossings.

¶ Duplicate Inports shall not be used.

¶ Inputs and outputs should be left and right justified

Correct

Incorrect

Notes on the incorrect model

¶ Inport 2 should be moved in so it does not cross the feed back loop lines.

¶ Outport 1 should be moved to the right hand side of the diagram.

Rationale

X Readability

Ã Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.0

4.3.4.3 na_0005: Port block name visibility in Simulink models

ID: Title na_0005: Port block name visibility in Simulink models

Priority Strongly recommended

16

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

The name of an Inport or Outport should not be hidden. ("Format / Hide Name" is not

allowed.)

Note: the correct setting is applied to the Inport and Outport blocks in the ORION

Library.

Rationale

X Readability

Ã Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.2

4.3.4.4 jc_0081: Icon display for Port block

ID: Title jc_0081: Icon display for Port block

Priority Recommended

Scope MAAB

MATLAB

Version
R14 and later

MA Check Yes

Prerequisites None

Description

The óIcon displayô setting should be set to óPort numberô for Inport and Outport

blocks.

Correct

Incorrect

17

Note: the correct setting is applied to the Inport and Outport blocks in the ORION

Library.

Rationale

X Readability

Ã Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.1

4.3.4.5 jm_0010: Port block names in Simulink models

ID: Title jm_0010: Port block names in Simulink models

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites

db_0042: Ports in Simulink models

na_0005: Port block name visibility in Simulink models

na_0009: Entry versus propagation of signal labels

Description

The names of Inport blocks and Outport blocks must match the corresponding signal

or bus names.

Exceptions:
¶ When any combination of an Inport block, an Outport block, and any other

block have the same block name, a suffix or prefix should be used on the

Inport and Outport blocks.

¶ One common suffix is ñ_Inò for Inports and ñ_Outò for Outports.

¶ Any suffix or prefix can be used on the ports, however the selected option

should be consistent.

¶ Library blocks and reusable subsystems that encapsulate generic functionality.

Rationale

X Readability

X Workflow

X Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.2

4.3.4.6 jh_0018: Variable type casting

ID: Title jh_0018: Variable type casting

Priority Recommended

18

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

All CSU top level inputs and outputs must be set to the appropriate Simulink bus

object. The bus explicitly defines all of the attributes of the data including the type,

dimension, and rate. This will ensure compatibility with the higher level empty box

architecture.

Also, if model reference blocks are used within a CSU, the input and output data

attributes should be explicitly defined in the ports (dimension, bus type, data type)

Rationale

Ã Readability

Ã Workflow

X Simulation

X Verification and Validation

¶ Code Generation

Last Change V1.0

4.3.5 Signals and Buses

Signal labels are used to make model functionality more understandable from the Simulink

diagram. They can also be used to control the variable names used in simulation and code

generation. Signal labels should be entered only once (at the point of signal origination). Often it is

desirable to also display the signal name elsewhere in the model. In these cases, the signal name

should be inherited until the signal is functionally transformed. (Passing a signal through an

integrator is functionally transforming. Passing a signal through an Inport into a nested subsystem is

not.) Once a named signal is functionally transformed, a new name should be associated with it.

Signals may be scalars, vectors, or buses. They may carry data or control flows. Unless explicitly

stated otherwise, the following naming rules apply to all types of signals.

4.3.5.1 jc_0221: Usable characters for signal line name

ID: Title jc_0221: Usable characters for signal line names

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

All named signals should conform to the following constraints:

FORM name:

¶ should not start with a number

19

¶ should not have blank spaces

¶ carriage returns are not allowed

ALLOWED

CHARACTERS

name:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 _

UNDERSCORES name:

¶ can use underscores to separate parts

¶ cannot have more than one consecutive underscore

¶ cannot start with an underscore

¶ cannot end with an underscore

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

X Code Generation

Last Change V2.1

4.3.5.2 jh_0040: Usable characters for Simulink Bus names

ID: Title jh_0040: Usable characters for Simulink Bus Names

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes ï this check is covered by jc_0221

Prerequisites None

Description

All Simulink Bus names should conform to the following constraints:

FORM name:

¶ should not start with a number

¶ should not have blank spaces

¶ carriage returns are not allowed

ALLOWED

CHARACTERS

name:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 _

UNDERSCORES name:

¶ can use underscores to separate parts

¶ cannot have more than one consecutive underscore

¶ cannot start with an underscore

¶ cannot end with an underscore

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

X Code Generation

20

Last Change V1.0

4.3.5.3 bn_0002: Signal name length limit

ID: Title bn_0002: Signal name length limit

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites jc_0221: Usable characters for signal line names

Description

The names of all signals must be unique. The Compiler limit of 32 characters must be

observed when creating signal names that are used for variable names in code.

32 characters is the maximum limit

Example:

Signal_Value_Argument_Variable_Example - should be changed to

signal_Value_Argument_Variable_Ex

Rationale

X Readability

Ã Workflow

Ã Simulation

X Verification and Validation

X Code Generation

Last Change V2.2

4.3.5.4 jh_0041: Simulink Bus Name Length Limit

ID: Title jh_0041: Simulink Bus name length limit

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes ï this check is covered by bn_0002

Prerequisites jh_0040: Usable characters for Simulink Bus Names

Description

The names of all Buses must be unique for the entire software model unless the

contents of the bus are identical. Bus names must start with a capital letter. The

Compiler limit of 32 characters must be observed when creating signal names that are

used for variable names in code.

32 characters is the maximum limit

Example:

BUS_Value_Argument_Variable_Example - should be changed to

BUS_Value_Argument_Variable_Ex

21

Rationale

X Readability

Ã Workflow

Ã Simulation

X Verification and Validation

X Code Generation

Last Change V1.1

4.3.5.5 jh_0051: Simulink Bus Format

ID: Title jh_0051: Simulink Bus Format

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites jh_0040: Usable characters for Simulink Bus Names

Description

The root level of a CSU should have 2 inports and 1 outport and follow the following

standard:

Input port and bus object name:

¶ <3 letter Domain abb.>_<CSU abb.>_IN

Input parameter port and bus object name:

¶ <3 letter Domain abb.>_<CSU abb.>_PRM

Output port and bus object name:

¶ <3 letter Domain abb.>_<CSU abb.>_OUT

Internal bus object name (these are buses that are not used outside of the CSU):

¶ <3 letter Domain abb.>_<CSU abb.>_<your_internal_bus_name>

The script that loads the CSU input, output, and parameter buses to the workspace

should use the following naming convention:

¶ loadCSUBuses_<3 letter Domain abb>_<CSU abb>.m

The script that loads the internal bus to the workspace should use the following

naming convention:

¶ loadIntlBuses_<3 letter Domain abb>_<CSU abb>.m

The top level IO ports should be set to non-virtual to ensure that the bus structure is

retained in the autocode. The following diagram shows the dialog box for an input

port with the ñOutput as non-virtual busò option checked. Version 2.0 of the Orion

Library has this option set by default for the input ports/output ports/ and bus creator

blocks.

22

Example of root level of CSU model ï the IN/OUT/PRM ports are shown:

23

Large Simulink Buses should contain nested buses to improve data organization

similar to that of structured data. Organizing the buses into nested buses greatly

increases the accessibility of the data.

Warning: when using nested buses do not name the element the same name as

the bus type. This will cause errors in the autocode. Also, the element name and

bus type should not differentiate on case alone.

For example:

A quaternion Bus may consist of the following signals:

BUS_quat_dbl:

¶ s (1x1) double

¶ v (3x1) double

The input bus may contain multiple quaternions as following:

BUS_Input

¶ Input_data (3x3) double

¶ quat1(BUS_quat_dbl)

¶ quat2(BUS_quat_dbl)

Note: The ORION Library uses the following buses for quaternion and euler math.

These buses are automatically loaded when the library is used.

¶ BUS_euler_dbl:

o yaw: (1x1) double

o pitch: (1x1) double

o roll: (1x1) double

o sequence: (1x1) int32

¶ BUS_euler_sgl:

o yaw: (1x1) single

o pitch: (1x1) single

o roll: (1x1) single

o sequence: (1x1) int32

¶ BUS_quat_dbl:

o s: (1x1) double

o v: (1x1) double

¶ BUS_quat_sgl:

o s: (1x1) single

o v: (1x1) single

Rationale

X Readability

X Workflow

Ã Simulation

X Verification and Validation

X Code Generation

Last Change V1.3

24

4.3.5.6 dm_0001: Signal and Bus Element Naming Convention

ID: Title dm_0001: Signal and Bus Element Naming Convention

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites

Description

Signal and Bus Element names shall adhere to the following convention:

¶ The first letter of each word contained in a signal or bus element name shall

be capitalized.

¶ Each word contained within a signal or bus element name shall be separated

with a single underscore or with no space at all.

¶ For multi-word signal or bus element names the first letter of second and

subsequent words shall be capitalized (example: Multi_Word_Identifier or

MultiWordIdentifier).

¶ Blank characters shall not be used to separate words use to form signal or bus

element names.

¶ When a signal or bus element name contains an acronym, the acronym should

be represented in uppercase letters (upper case capitalization).

Note: This does not apply to the common quaternion and euler buses used by blocks

in the ORION Library.

Rationale

X Readability

Ã Workflow

Ã Simulation

Ã Verification and Validation

X Code Generation

Last Change V1.3

4.3.5.7 mj_0001: CSU Input Bus Naming

ID: Title mj_0001: CSU input Bus Naming

Priority Recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites jh_0051: Simulink Bus Format

Description

CSU input bus types should have field names identical to their upstream CSU output

bus field names whenever possible. This facilitates traceability and reduces error

potential. Exceptions may be made on a case by case basis to keep CSUs generic or

for other reasons. Variable name changes inside of CSUs are permissible at the CSU

developerôs discretion.

25

Example of acceptable internal signal name changes with selected CSU inputs feeding

subsystems with differing input port names:

Do not change the variable names at the Junction Box Level (shown below)

26

Rationale

X Readability

Ã Workflow

Ã Simulation

Ã Verification and Validation

X Code Generation

Last Change V1.0

4.3.5.8 jh_0111: Bus Ordering and Alignment

ID: Title jh_0111: Bus Ordering and Alignment

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites jh_0051: Simulink Bus Format

Description

All elements in a Simulink Bus should be ordered largest to smallest to prevent data

from overlapping a 32-bit boundary. This restriction is related to a limitation on the

target processor that must be realized in the source of the autocode to prevent issues.

Bus must be ordered based on data type in descending order of size, i.e. double >

27

single > uint32 > uint16 > uint8 (Boolean is treated like an uint8).

For Example, the following bus will correctly fall on 32-bit boundary.

float a;

float b

uint8 c[3];

However, this bus will not:

float a;

uint8 c[3];

float b;

Rationale

Ã Readability

Ã Workflow

Ã Simulation

Ã Verification and Validation

X Code Generation

Last Change V1.0

4.3.5.9 jh_0117: Shared CSUs Across Domains

ID: Title jh_0117: Shared CSUs Across Domains

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites jh_0051: Simulink Bus Format

Description

In some rare cases, a CSU may be used in more than one domain. This CSU will

perform the same function in each CSU and is not modified in any way.

If this is the case one of the domains should be selected as the owner of the CSU. The

CSU will be named using the domain prefix of the parent Domain. In the other/non-

owner Domain, the CSU is referenced in a Junction box with I/O/PRM naming

specific to the domain and function of the CSU. Within this Junction box, the signals

will be renamed to correspond to the naming convention of the referenced CSU

model:

Note: The configuration set of the CSU must be set to use ñCSUCfgSetMRò. This

will ensure that the code produced for the CSU can be called from multiple domains.

Example:

The GDO_OrbGuid_CSU is used within both the GDO and GDE domains. The GDO

domain is chosen as the parent. The I/O/PRM naming is tied to the GDO Domain:

28

¶ GDO_OrbGuid_IN

¶ GDO_OrbGuid_OUT

¶ GDO_OrbGuid_PRM

For this CSU to be used in the GDE Domain, a separate CSU naming scheme must be

used for the Junction box. In this case, the new name is GDE_CMRaiseTargetGuid.

The I/O/PRM naming entering and leaving the Junction box is as follows:

¶ GDE_CMRTG_IN

¶ GDE_ CMRTG _OUT

¶ GDE_ CMRTG _PRM

Within the Junction box, the buses are renamed to match that of the GDO_OrbGuid

I/O/PRM.

¶ GDE_ CMRTG _IN renamed to GDO_OrbGuid_IN

¶ GDE_ CMRTG _OUT renamed to GDO_OrbGuid_OUT

¶ GDE_ CMRTG _PRM renamed to GDO_OrbGuid_PRM

This approach will ensure full CSU code reusability across domains.

Rationale

X Readability

X Workflow

X Simulation

Ã Verification and Validation

X Code Generation

Last Change V1.0

4.3.5.10 na_0010: Grouping data flows into signals

ID: Title na_0010: Grouping data flows into signals

29

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Vectors

The individual scalar signals composing a vector must have common functionality,

data types, dimensions and units. The most common example of a vector signal is

sensor or actuator data that is grouped into an array indexed by location. The output

of a Mux block must always be a vector. The inputs to a Mux block must always be

scalars.

All vectors must be Column vectors (nx1)

Buses

Signals that do not meet the vectorization criteria described above must only be

grouped into bus signals. Bus selector blocks may only be used with a bus signal

input; they must not be used to extract scalar signals from vector signals.

Examples

Some examples of vector signals include:

Vector type Size

Column vector [n 1]

Wheel speed vector [Number of wheels 1]

Cylinder vector [Number of cylinders 1]

Position vector based on 2-D

coordinates
[2 1]

Position vector based on 3-D

coordinates
[3 1]

Some examples of bus signals include:

Bus Type Elements

Sensor Bus

Force Vector [Fx; Fy; Fz]

Position

Wheel Speed Vector [Ūlf ; Ūrf ; Ūlr ; Ūrr]

Acceleration

Pressure

Controller Bus
Sensor Bus

Actuator Bus

Serial Data Bus Coolant Temperature

30

Engine Speed,

Passenger Door Open

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

X Code Generation

Last Change V2.1

4.3.5.11 na_0009: Entry versus propagation of signal labels

ID: Title na_0009: Entry versus propagation of signal labels

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites na_0008: Display of labels on signals

Description

If a label is present on a signal, the following rules define whether that label shall be

created there (entered directly on the signal) or propagated from its true source

(inherited from elsewhere in the model by using the ó<ô character).

1. Any displayed signal label must be entered for signals that:

a. Originate from an Inport at the Root (top) Level of a model

b. Originate from a basic block that performs a transformative operation

(For the purpose of interpreting this rule only, the Bus Creator block,

Mux block and Selector block shall be considered to be included among

the blocks that perform transformative operations.)

2. Any displayed signal label must be propagated for signals that:

a. Originate from an Inport block in a nested subsystem

Exception: If the nested subsystem is a library subsystem, a label may

be entered on the signal coming from the Inport to accommodate reuse

of the library block.

b. Originate from a basic block that performs a non-transformative

operation

c. Originate from a Subsystem or Stateflow chart block

Exception: If the connection originates from the output of a library

subsystem block instance, a new label may be entered on the signal to

accommodate reuse of the library block.

31

Rationale

X Readability

X Workflow

Ã Simulation

X Verification and Validation

X Code Generation

Last Change V2.0

4.3.5.12 hyl_0311: Naming of signals passed through multiple subsystems

ID: Title hyl_0311: Naming of signals passed through multiple subsystems

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Names of inports/outports should not change between a subsystem and its parent, with

the allowable exception that the first layer of subsystems may change a top-level

in/out name (at the CSU root level). If such a change is performed, all first layer

subsystems shall use the same name change for consistency. [Example: A signal

called "pitchAngle" can be input, and changed to "pitch" on a 1st subsystem layer, but

you cannot change this name to "theta" in a lower subsystem.] This standard is

completed for convenience within the model.

Example:

Incorrect

32

Rationale

X Readability

X Workflow

Ã Simulation

X Verification and Validation

Ã Code Generation

Last Change V2.1

4.3.5.13 na_0008: Display of labels on signals

ID: Title na_0008: Display of labels on signals

Priority Recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

33

Description

A label must be displayed on any signal originating from the following blocks:

¶ Inport block

¶ From block (block icon exception applies ï see Note below)

¶ Subsystem block or Stateflow chart block (block icon exception applies)

¶ Bus Selector block (signal labels are automatic)

¶ Demux block

¶ Selector block

A label must be displayed on any signal connected to the following destination blocks

(directly or via a basic block that performs a non transformative operation):

¶ Outport block

¶ Goto block

¶ Bus Creator block

¶ Mux block

¶ Subsystem block

¶ Chart block

¶ Embedded Matlab Block

Note: Block icon exception (applicable only where called out above): If the signal label

is visible in the originating block icon display, the connected signal need not also have

the label displayed unless the signal label is needed elsewhere due to a destination-

based rule.

In addition, a label may be displayed on any other signal of interest to the user.

Rationale

X Readability

X Workflow

Ã Simulation

X Verification and Validation

X Code Generation

Last Change V2.1

4.3.5.14 db_0097: Position of labels for signals and buses

ID: Title db_0097: Position of labels for signals and buses

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The labels must be visually associated with the corresponding signal and not overlap

other labels, signals or blocks.

34

Labels should be located consistently below horizontal lines and close to the

corresponding source or destination block.

Correct:

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.0

4.3.5.15 hyl_0110: Branching line format

ID: Title hyl_0110: Branching line format

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

All branch lines shall have a "solder-joint" showing the connection point. Line

branches should be made as short as possible, avoid crossing other lines as much as

possible and not cut across blocks.

Examples of Incorrect Signal Line Usage

35

Rationale

X Readability

Ã Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.1

4.3.5.16 mdb_0032: Simulink signal appearance

ID: Title mdb_0032: Simulink signal appearance

Priority Strongly recommended

Scope ORION (modified MAAB db_0032)

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Signal lines

¶ Should not cross each other, if possible.

¶ Are drawn with right angles.

¶ Are not drawn one upon the other.

¶ Do not cross any blocks.

¶ Can be split into two or three sub lines at a single branching point

Correct

Correct

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.0

4.3.5.17 db_0081: Unconnected signals, block inputs and block outputs

ID: Title db_0081: Unconnected signals, block inputs and block outputs

Priority Mandatory

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description A system must not have any:

36

¶ Unconnected subsystem or basic block inputs.

¶ Unconnected subsystem or basic block outputs

¶ Unconnected signal lines

¶ An otherwise unconnected input should be connected to a ground block

¶ An otherwise unconnected output should be connected to a terminator block

Correct

Incorrect

Rationale

X Readability

X Workflow

Ã Simulation

X Verification and Validation

Ã Code Generation

Last Change V2.0

4.3.5.18 jh_0061: Use of Parameters

ID: Title jh_0061: Use of Parameters

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Parameters may be accessed without connecting signal lines throughout the CSU

model. The following blocks make up the Parameter interface for the ORION Library:

¶ Param_Gain

¶ Param_Const

¶ Param_Goto

¶ Param_Visibility

¶ Param_From

The data on the parameter bus can be accessed by using the Param_Gain,

Param_Const, and Param_Goto blocks. The Param_Gain and Param_Const let you

select any data that is on the Parameter bus directly without using a bus selector and

connecting the signal line to the root level.

37

The example below shows how the parameter input bus should be used. It is

connected directly to a Goto block that is visible throughout the entire CSU model.

Note: the Param_Visibility block does not pass through model reference blocks or

atomic subsystems. To use data from the parameter bus in these systems, it must be

taken as an input using the Param_From block.

Rationale

X Readability

Ã Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V1.0

4.3.6 Blocks

This section generically applies to individual blocks that are used in the models.

4.3.6.1 hyl_0302: Usable characters for Block Names

ID: Title hyl_0302: Usable characters for block names

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites jc_0201: Usable characters for Subsystem names

Description

All named blocks should conform to the following constraints:

FORM name:

¶ should not start with a number

¶ should not have blank spaces

¶ carriage returns are not allowed

38

ALLOWED

CHARACTERS

name:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 _

UNDERSCORES name:

¶ can use underscores to separate parts

¶ cannot have more than one consecutive underscore

¶ cannot start with an underscore

¶ cannot end with an underscore

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

X Code Generation

Last Change V2.0

4.3.6.2 hyl_0305: Block name uniqueness

ID: Title hyl_0305: Block name uniqueness

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Block names shall not be made unique by using case.

Example:

Incorect

Rationale

X Readability

Ã Workflow

Ã Simulation

Ã Verification and Validation

X Code Generation

39

Last Change V2.1

4.3.6.3 hyl_0309: Block name usage

ID: Title hyl_0309: Block name usage

Priority Recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Block names may be left as the default name (i.e., "greaterThan"), but if a better name

is available, the user is encouraged to use it. It is desirable for the blocks to be named

with the intent rather than the value. For example, it would be better to name a

constant with the value of zero ñinitialSelectionò than to name it ñzeroò.

Rationale

X Readability

Ã Workflow

Ã Simulation

X Verification and Validation

X Code Generation

Last Change V2.1

4.3.6.4 jh_0062: Constant Block Naming

ID: Title jh_0062: Constant Block Naming

Priority Strongly Recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Constant blocks should be named according to the data that they contain. This will

aid in the traceability of the autocode produced.

Note: this standard does not apply to the Param_Const block.

Rationale

X Readability

Ã Workflow

Ã Simulation

X Verification and Validation

X Code Generation

Last Change V2.1

40

4.3.6.5 jm_0002: Block resizing

ID: Title jm_0002: Block resizing

Priority Mandatory

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

All blocks in a model must be sized such that their icon is completely visible and

recognizable. In particular, any text displayed (e.g. tunable parameters, filenames,

equations) in the icon must be readable.

This guideline requires resizing of blocks with variable icons or blocks with a variable

number of inputs and outputs. In some cases it may not be practical or desirable to

resize the block icon of a subsystem block so that all of the input and output names

within it are readable. In such cases, the user may hide the names in the icon by using

a mask or by hiding the names in the subsystem associated with the icon. In this

approach, the signal lines coming into and out of the subsystem block should be

clearly labeled in close proximity to the block.

Correct

Incorrect

Rationale

X Readability

Ã Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.0

4.3.6.6 db_0142: Position of block names

ID: Title db_0142: Position of block names

Priority Strongly recommended

Scope MAAB

MATLAB All

41

Version

MA Check Yes

Prerequisites None

Description

If shown, the name of each block should be placed below the block.

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.0

4.3.6.7 jc_0061: Display of block names

ID: Title jc_0061: Display of block names

Priority Recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

¶ The block name should be displayed when it provides descriptive information.

¶ The block name should not be displayed if the block function is known from its

appearance.

42

Rationale

X Readability

Ã Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.1

4.3.6.8 db_0140: Display of basic block parameters

ID: Title db_0140: Display of basic block parameters

Priority Recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Important parameters with values other than the blockôs default values should be

displayed. Many blocks within the ORION Library have important parameter values

displayed by default.

Note: The attribute string is one method to support this. The block annotation tab

allows the users to add the desired attribute information.

Correct

43

Rationale

X Readability

Ã Workflow

Ã Simulation

X Verification and Validation

Ã Code Generation

Last Change V2.1

4.3.6.9 mdb_0141: Signal flow in Simulink models

ID: Title mdb_0141: Signal flow in Simulink models

Priority Strongly recommended

Scope ORION (modified MAAB db_0141)

MATLAB

Version
All

MA Check No

Prerequisites None

Description

¶ The signal flow in a model is from left to right.

¶ Exception: Feedback loops

¶ Sequential blocks or subsystems are arranged from left to right.

¶ Exception: Feedback loops

¶ Parallel blocks or subsystems are arranged from top to bottom.

Rationale

X Readability

X Workflow

Ã Simulation

X Verification and Validation

Ã Code Generation

Last Change V2.0

4.3.6.10 jc_0171: Maintaining signal flow when using Goto and From blocks

ID: Title jc_0171: Maintaining signal flow when using Goto and From blocks

Priority Strongly recommended

Scope MAAB

MATLAB All

Signal flow should be drawn from left to rightSignal flow should be drawn from left to right

44

Version

MA Check No

Prerequisites None

Description

¶ Visual depiction of signal flow must be maintained between subsystems.

¶ Use of Goto and From blocks is allowed provided that

¶ At least one signal line is used between connected subsystems.

¶ If the subsystems are connected both in a feed forward and feedback loop

then at least one signal line for each direction must be connected.

Correct

Incorrect

Rationale

X Readability

X Workflow

Ã Simulation

X Verification and Validation

Ã Code Generation

Last Change V2.0

4.3.6.11 jc_0281: Naming of Trigger Port block and Enable Port block

ID: Title jc_0281: Naming of Trigger Port block and Enable Port block

Priority Strongly recommended

Scope J-MAAB

MATLAB All

45

Version

MA Check Yes

Prerequisites None

Description

For Trigger port blocks and Enable port blocks

¶ The block name should match the name of the signal triggering the

subsystem.

Rationale

X Readability

Ã Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.0

4.3.7 Block Usage

The acceptable blocks that can be used for ORION GN&C models are restricted. The ORION

Library contains all of the blocks that are deemed useable in models.

4.3.7.1 hyl_0201: Use of standard library blocks only

ID: Title hyl_0201: Use of standard library blocks only

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Only compliant Library blocks from the Orion GN&C Algorithm Library should be

used in the models. If non-compliant blocks are used, it shall have foreground color

of red (Colorspec RGB value = [1.000000, 0.501961, 0.501961])

The ORION library contains a section of non-compliant blocks in the ñPrototype

Blocksò section. These blocks are already colored red. The purpose of this set of

blocks are for development only and should not be included in the final models

The Domain Level Blocks section contains blocks that should only exists at the

domain level and are prohibited at the CSU level.

46

Rationale

X Readability

X Workflow

X Simulation

X Verification and Validation

X Code Generation

Last Change V2.1

4.3.7.2 jh_0101: Use of Right-Handed Quaternions only

ID: Title jh_0101: Use of Right-Handed Quaternions Only

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Orion GN&C models shall only use right-handed quaternions. The ORION GN&C

Library does not support the use of left-handed quaternions.

Rationale

X Readability

X Workflow

X Simulation

X Verification and Validation

X Code Generation

Last Change V1.0

4.3.7.3 na_0003: Simple logical expressions in If Condition block

ID: Title na_0003: Simple logical expressions in If Condition block

Priority Mandatory

47

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

A logical expression may be implemented within an If Condition block instead of

building it up with logical operation blocks if the expression contains two or fewer

primary expressions. All inputs to an If Condition block must be the same data type.

A primary expression is defined here to be one of the following:

¶ An input

¶ A constant

¶ A constant parameter

¶ A parenthesized expression containing no operators except zero or one

instances of the following operators: < , <= , > , >= , ~=, ==, ~ . (See below

for examples)

Exception:

A logical expression may contain more than two primary expressions if both of the

following are true:

¶ The primary expressions are all inputs

¶ Only one type of logical operator is present

Examples of acceptable exceptions:

¶ u1 | u2 | u3 | u4 | u5

¶ u1 & u2 & u3 & u4

Examples of primary expressions include:

¶ u1

¶ 5

¶ K

¶ (u1 > 0)

¶ (u1 <= G)

¶ (u1 > U2)

¶ (~u1)

Examples of acceptable logical expressions include:

¶ u1 | u2

¶ (u1 > 0) & (u1 < 20)

¶ (u1 > 0) & (u2 < u3)

¶ (u1 > 0) & (~u2)

Examples of unacceptable logical expressions include:

48

¶ u1 & u2 | u3 (too many primary expressions)

¶ u1 & (u2 | u3) (unacceptable operator within primary

expression)

¶ (u1 > 0) & (u1 < 20) & (u2 > 5) (too many primary expressions that are

not inputs)

¶ (u1 > 0) & ((2*u2) > 6) (unacceptable operator within

primary expression)

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.1

4.3.7.4 na_0002: Appropriate implementation of fundamental logical and numerical

operations

ID: Title
na_0002: Appropriate implementation of fundamental logical and numerical

operations

Priority Mandatory

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

¶ Blocks that are intended to perform numerical operations must not be used to

perform logical operations.

Incorrect

¶ A logical output should never be directly connected to the input of blocks

that operate on numerical inputs.

¶ The result of a logical expression fragment should never be operated on by a

numerical operator.

Incorrect

49

¶ Blocks that are intended to perform logical operations must not be used to

perform numerical operations.

¶ A numerical output should never be connected to the input of blocks that

operate on logical inputs.

Incorrect

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.0

4.3.7.5 na_0011: Scope of Goto and From blocks

ID: Title na_0011: Scope of Goto and From blocks

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description
For signal flows the following rules apply:

¶ From and Goto blocks must use local scope.

50

Note: This rule does not apply to the Parameter Goto Block for passing static data

throughout a CSU.

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

X Code Generation

Last Change V2.0

4.3.7.6 jc_0141: Use of the Switch block

ID: Title jc_0141: Use of the Switch block

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description
The block parameter ñCriteria for passing first inputò should be set to u2~=0.

51

The block parameter ñCriteria for passing first inputò must not be set to u2>Threshold

for R13 versions of MATLAB.

The logic for the switch block should be defined on the same level as the switch block

itself.

Correct

Incorrect

Note: This criteria is not available to change in the ORION Library. The criteria is

locked to ñu2 ~= 0ò.

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.1

52

4.3.7.7 hyl_0207: Limiting input to multiport switches

ID: Title hyl_0207: Limiting input to multiport switches

Priority Mandatory

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Logic input to Multiport Switch Blocks shall never be less than one, or greater than

the number of switch ports on the block. The user ensures this by the model-design

or upstream limiting.

Note: One based indexing [1, 2, 3,é] is used for Matlab/Simulink

Rationale

Ã Readability

Ã Workflow

X Simulation

X Verification and Validation

X Code Generation

Last Change V2.1

4.3.7.8 jc_0121: Use of the Sum block

ID: Title jc_0121: Use of the Sum block

Priority Recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Sum blocks should:

¶ Use the ñrectangularò shape.

¶ Be sized so that the input signals do not overlap.

Correct Incorrect

53

¶ The round shape can be used in feedback loops.

¶ There should be no more than 3 inputs.

¶ The inputs may be positioned at 90,180,270 degrees.

¶ The output should be positioned at 0 degrees.

Correct

Incorrect

Correct

Incorrect

Rationale

X Readability

Ã Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.0

54

4.3.7.9 jc_0131: Use of Relational Operator block

ID: Title jc_0131: Use of Relational Operator block

Priority Recommended

Scope J-MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

When the relational operator is used to compare a signal to a constant value the

constant input should be the second (lower) input.

Correct

Incorrect

Rationale

X Readability

Ã Workflow

Ã Simulation

Ã Verification and Validation

X Code Generation

Last Change V2.0

4.3.7.10 hyl_0211: Prohibit use of test points

ID: Title hyl_0211: Prohibit use of test points

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

Test points shall not be used in the final models. However, the use of test points can

be used during development for testing purposes.

The configuration set used by the ORION GN&C FSW models ignores test points

when autocode is produced so there is not affect to code generation.

Rationale

Ã Readability

Ã Workflow

X Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.1

55

4.3.7.11 jh_0109: Merge Blocks

ID: Title jh_0109: Merge Blocks

Priority Strongly Recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Care must be taken when using the Merge Block. There are a few rules of thumb

that must be followed when using merge blocks:

¶ The signals entering a merge block must not branch off to any other block. The

merge block must be the signalsô only destination

¶ When using Merge Blocks with buses:

o All buses must be absolutely identical. The number of elements, element

names, element order, element data type, and element size must match

exactly between all buses being merged

o All buses must be of the same virtuality (i.e. all non-virtual or all virtual).

It is recommended to use non-virtual buses and create a bus object for the

buses being merged. This is the most fail safe way to prevent

inconsistencies.

o All bus lines entering a merge block must not branch off to any other

block. The merge block must be the bus lines only destination

o Do not use the Signal_Conversion block on signals feeding Merge

blocks. The Signal_Conversion block may create an intermediate

variable that is assigned every cycle. This may force the Merge block to

use the data from that signal, regardless of the state of the other signals.

Rationale

Ã Readability

Ã Workflow

X Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V1.1

4.3.7.12 mjc_0111: Direction of Subsystem

ID: Title mjc_0111: Direction of Subsystem

Priority Strongly recommended

Scope ORION (modified J-MAAB jc_0111)

MATLAB

Version
All

MA Check No

56

Prerequisites None

Description

Subsystems must not be reversed except when used in feedback loops.

Correct

Correct

Rationale

X Readability

Ã Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.0

4.3.8 Block Parameters

4.3.8.1 db_0112: Indexing

ID: Title db_0112: Indexing

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

One based indexing [1, 2, 3,é] is used for

¶ MATLAB

¶ Workspace variables and structures

¶ Local variables of m-functions

¶ Global variables

¶ Simulink

¶ Signal vectors and matrices

57

¶ Parameter vectors and matrices

¶ M-coded S-Function input and output signal vectors and matrices

¶ M-coded S-Function parameter vectors and matrices

¶ M-coded S-Function local variables

Zero based Indexing [0, 1, 2, ...] is used for

¶ Simulink

¶ C-coded S-Function input and output signal vectors and matrices

¶ C-coded S-Function input parameters

¶ C-coded S-Function parameter vectors and matrices

¶ C-coded S-Function local variables

¶ Stateflow

¶ Custom c-code variables and structures

¶ Buses

¶ Input and output signal vectors and matrices

¶ Parameter vectors and matrices

¶ Local variables

¶ C-Code

¶ Local variables and structures

¶ Global variables

Model explorer view of Stateflow chart for setting the First Index

58

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

X Code Generation

Last Change V2.3

4.3.8.2 db_0110: Tunable parameters in basic blocks

ID: Title db_0110: Tunable parameters in basic blocks

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

59

Prerequisites None

Description

All tunable parameters must be fed into the model through the Parameter input bus.

Tunable parameters must not be accessed from the Matlab workspace via constant

blocks, gain blocks, and other blocks that have parameter inputs.

This standard ensures that the autocode will retain the parameter structure and

tunability.

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

X Code Generation

Last Change V2.1

4.3.9 Subsystems

4.3.9.1 jc_0201: Usable Characters for Subsystem Names

ID: Title jc_0201: Usable characters for Subsystem names

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

The names of all Subsystem blocks should conform to the following constraints:

FORM name:

¶ should not start with a number

¶ should not have blank spaces

¶ carriage returns are not allowed

ALLOWED

CHARACTERS

name:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 _

UNDERSCORES name:

¶ can use underscores to separate parts

¶ cannot have more than one consecutive underscore

¶ cannot start with an underscore

¶ cannot end with an underscore

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

X Code Generation

Last Change V2.1

60

4.3.9.2 bn_0001 Subsystem name length limit

ID: Title bn_0001: Subsystem Name Length Limit

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites jc_0201: Usable characters for Subsystem names

Description

The names of all Subsystem blocks must be unique. Compiler limits must be

observed when creating subsystem names that are used in code or system filenames.

32 characters is the maximum limit

Example:

Subroutine_Function_Algortihm_Example becomes

Subroutine_Function_Algortihm_Ex

This_is_a_Really_Long_Subsystem_Name becomes

A_Really_Long_Subsystem_Name

Rationale

X Readability

Ã Workflow

¶ Simulation

X Verification and Validation

X Code Generation

Last Change V2.1

4.3.9.3 hyl_0307: Use of subsystem name

ID: Title hyl_0307: Use of subsystem name

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

No block shall be named "subsystem" (or "subsystem1" "subSystem1,ò etc.) or have

ñsubsystemò in the name.

Example:

Incorrect

61

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

X Code Generation

Last Change V2.1

4.3.9.4 db_0144: Use of Subsystems

ID: Title db_0144: Use of Subsystems

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

Blocks in a Simulink diagram should be grouped together into subsystems based

upon a functional decomposition of the algorithm, or portion thereof, represented in

the diagram.

Grouping blocks into subsystems primarily for the purpose of saving space in the

diagram should be avoided. Each subsystem in the diagram should represent a unit

of functionality required to accomplish the purpose of the model or sub model.

Rationale

X Readability

X Workflow

Ã Simulation

X Verification and Validation

X Code Generation

Last Change V2.2

4.3.9.5 jh_0049: Use of Model References or Reusable Subsystems

ID: Title jh_0049: Use of Model References or Reusable Subsystems

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

62

Prerequisites jh_0202: Testable Unit

Description

Only subsystems that reside in the ORION Library should be set to be a ñReusable

Functionò. This setting is shown in the Subsystem Parameter Dialog window below.

If a complex subsystem within a CSU is used multiple times it may be converted into

a standalone model (.mdl) and referenced via the model reference block. This will

ensure reusability of the autocode. Refer to jh_0202: Testable Units for a further

description of how do decompose a model using Model Reference.

eML functions may not be shared between CSUs or Model References directly. If an

eML function is used by multiple models, the eML function should be wrapped in a

Simulink model and called as a Model Reference that contains an eML block that

calls the function.

Rationale X Readability X Verification and Validation

63

X Workflow

Ã Simulation

X Code Generation

Last Change V1.1

4.3.9.6 jh_0050: Model References Simulation Mode

ID: Title jh_0050: Model References Simulation Mode

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites none

Description

Models that contain model reference blocks should have the blocks set to be in

ñAcceleratedò Model. This setting can be changed by right-clicking on a model

reference block, selecting ModelReference Parameters, and then selecting

ñAcceleratorò for the Simulation mode.

See the GUI below:

64

The Simulation mode for a model reference block can be determined by the block

graphic. Model Reference blocks that are in ñAcceleratorò mode have filled in black

triangles on the corners of the block.

65

Model Reference Block ï Accelerated Mode

Model Reference blocks that are in ñNormalò mode have empty triangles on the

corners of the block.

Model Reference Block ï Normal Mode

Rationale

Ã Readability

Ã Workflow

X Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V1.0

4.3.9.7 db_0146: Triggered, enabled, conditional Subsystems

ID: Title db_0146: Triggered, enabled, conditional Subsystems

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

The blocks that define subsystems as either conditional or iterative should be located

at a consistent location at the top of the subsystem diagram. These are:

¶ Function call

¶ Enabled

¶ Triggered

¶ If / Else Action

66

Exception: Only trigger blocks can be used for model reference models at the root

level. These trigger blocks can only be set to ñfunction callò and only one is allowed

at the root level.

Correct

Incorrect

Rationale

X Readability

X Workflow

Ã Simulation

X Verification and Validation

Ã Code Generation

Last Change V2.1

4.3.9.8 jph_0010: Use of Masks

ID: Title jph_0010: Use of Masks

Priority Recommended

Scope ORION

67

MATLAB

Version
All

MA Check No

Prerequisites

Description

The use of ñMasksò can greatly increase the readability of a Simulink model by

replacing the generic subsystem appearance with an icon that better illustrates the

underlying math. Masks are only permitted for Subsystem blocks and blocks in the

ORION Library and shall not be used anywhere else in a CSU model.

When creating Masks for subsystems, only the ñIcon & Portsò tab may be modified in

the Mask Editor.

Mask Editor

No entries shall be made in the ñParametersò, ñInitializationò, or ñDocumentationò

tabs of the Mask Editor.

Mask ñdialogsò are not permitted for non-ORION Library blocks. Mask dialogs are

automatically created by Simulink when parameters are added to a masked

Subsystem, therefore, adding parameters to a mask is not allowed.

All inports and outports of a subsystem shall be labeled with their symbolic

representation or underlying port name when masking a subsystem.

See the Appendix for ñSubsystem Masking Methods and Guidelinesò for more

68

information on how to create Masks.

Example of proper use of a Subsystem Mask:

Rationale

X Readability

X Workflow

Ã Simulation

X Verification and Validation

Ã Code Generation

Last Change V1.0

4.3.9.9 hyl_0308: Use of reference model name

ID: Title hyl_0308: Use of reference model name

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check Yes

Prerequisites None

Description

No block shall be named ñreferenced modelò (or ñreferenced model1,ò

referencedModel1,ò etc.).

Example

Incorrect

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

X Code Generation

69

Last Change V2.0

4.3.10 Subsystem Patterns

The following rules illustrate sample patterns used in Simulink diagrams. As such they would

normally be part of a much larger Simulink diagram.

4.3.10.1 na_0012: Use of Switch vs. Case vs. If -Then-Else Action Subsystem

ID: Title na_0012: Use of Switch vs. Case vs. If -Then-Else Action Subsystem

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The Switch block:

¶ Should be used for modeling simple if-then-else structures if the associated

then and else actions involve only the assignment of constant values.

The if -then-else action subsystem construct:

¶ Should be used for modeling if-then-else structures if the associated then

and/or else actions require complicated computations. This will maximize

simulation efficiency and the efficiency of generated code (Note that even a

basic block, for example a table look-up, can require fairly complicated

computations.)

¶ Must be used for modeling if-then-else structures if the purpose of the

construct is to avoid an undesirable numerical computation, such as division

by zero.

70

¶ Should be used for modeling if-then-else structures if the explicit or implied

then or the else action is just to hold the associated output value(s).

In other cases, the degree of complexity of the then and/or else action computations

and the intelligence of the Simulink simulation and code generation engines will

determine the appropriate construct.

These statements also apply to more complicated nested and cascaded if-then-else

structures and case structure implementations.

Generally, the If/Then block, Case block, and Switch Simulink blocks can be used to

create the same logic functionality in a Simulink model. However, the autocode of

these may slightly differ. Here are some Example block constructs and the resulting

autocode to illustrate the differences. Pay special attention to the last example

involving a switch blocks and model reference blocks.

If/Then Block Example:

Resulting Autocode:

 if (IfThen_test_U.int_j == 1U) {
 IfThen_test_B.Merge3 = 333.0 * IfThen_test_U.data;
 } else if (IfThen_test_U.int_j == 2U) {
 IfThen_test_B.Merge3 = 444.0 * IfThen_test_U.data;
 } else {
 if (IfThen_test_U.int_j == 3U) {
 IfThen_test_B.Merge3 = 555.0 * IfThen_test_U.data;
 }
 }

Case Block Example:

Resulting Autocode:

71

 switch (Case_test_U.int_o) {
 case 1:
 Case_test_B.Merge3 = 333.0 * Case_test_U.data;
 break ;

 case 2:
 Case_test_B.Merge3 = 444.0 * Case_test_U.data;
 break ;

 case 3:
 Case_test_B.Merge3 = 555.0 * Case_test_U.data;
 break ;
 }

Switch Block Example:

Resulting Autocode:

 switch (Switch_test_U.int_j) {
 case 1:
 Switch_test_Y.Outport1 = 333.0 * Switch_test_U.data;
 break ;

 case 2:
 Switch_test_Y.Outport1 = 444.0 * Switch_test_U.data;
 break ;

 default :
 Switch_test_Y.Outport1 = 555.0 * Switch_test_U.data;
 break ;
 }

The switch case will autocode similarly to the If/Then or Case constructs with one

exception. If a subsystem related to a Switch block contains a Model Reference

block, this Model reference block will not be called from within the case statement.

The call to the model reference will occur on each pass, regardless of the outcome of

the logic. Only the data will be assigned within the case statement. This type of

construct should be avoided to prevent unnecessary computations.

Switch Block with Model Reference Example:

72

Resulting Autocode:

 mr_Mref(&Switch_test_U.data, &rtb_Model_Reference2);

 mr_Mref(&Switch_test_U.data, &rtb_Model_Reference3);

 mr_Mref(&Switch_test_U.data, &rtb_Model_Reference4);

 switch (Switch_test_U.int_j) {
 case 1:
 Switch_test_Y.Outport3 = rtb_Model_Reference2;
 break ;

 case 2:
 Switch_test_Y.Outport3 = rtb_Model_Reference3;
 break ;

 default :
 Switch_test_Y.Outport3 = rtb_Model_Reference4;
 break ;
 }

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V3.0

4.3.10.2 db_0114: Simulink patterns for If-then-else-if constructs

ID: Title db_0114: Simulink patterns for If-then-else-if constructs

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description

The following patterns should be used for If-then-else-if constructs within Simulink:

Equivalent Functionality Simulink pattern

73

IF THEN ELSE IF with

switch blocks

if (If_Condition) {
output_signal = If_Value;
}
else if (Else_If_Condition) {
output_signal = Else_If_Value;
}
else {
output_signal = Else_Value;
}

IF THEN ELSE IF

with if/then/else

subsystems:
if(Fault_1_Active &
Fault_2_Active)
{
 ErrMsg = SaftyCrit;
}
else if (Fault_1_Active |
Fault_2_Active)

{
 ErrMsg = DriveWarn;
}
else
{
 ErrMsg = NoFaults;
}

A maximum of 10 cases should be used with the pattern shown above. If there are

more than 10 cases, eML or Stateflow should be used to implement the logic.

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

X Code Generation

Last Change V2.1

4.3.10.3 db_0115: Simulink patterns for case constructs

ID: Title db_0115: Simulink patterns for case constructs

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

74

Prerequisites None

Description

The following patterns are used for case constructs within Simulink:

Equivalent Functionality Simulink Pattern

Case

With switch case block

switch (PRNDL_Enum)
{
case 1
 TqEstimate = ParkV;
 break;
case 2
 TqEstimae = RevV;
 break;
default
 TqEstimate = NeutralV;
 break;

}

CASE

with multiport switch and

subsystems:

output_version1 =
function_version1(input_signal);
output_version2 =
function_version2(input_signal);
output_version3 =
function_version3(input_signal);
output_version4 =
function_version4(input_signal);

switch (selection) {
case 1:
output_signal = output_version1;
break;
case 2:
output_signal = output_version2;
break;
case 3:
output_signal = output_version3;
break;
default:
output_signal = output_version4;
}

75

CASE

with multiport switch and

enabled subsystems:

switch (selection) {
case 1:
output_version1 =
function_version1(input_signal);
output_signal = output_version1;
break;
case 2:
output_version2 =
function_version2(input_signal);
output_signal = output_version2;
break;
case 3:
output_version3 =
function_version3(input_signal);
output_signal = output_version3;
break;
default:
output_version4 =
function_version4(input_signal);
output_signal = output_version4;
}

A maximum of 10 cases should be used with the pattern shown above. If there are

more than 10 cases, eML or Stateflow should be used to implement the logic.

Rationale

X Readability

X Workflow

Ã Simulation

X Verification and Validation

Ã Code Generation

Last Change V2.1

4.3.10.4 bn_0003: Use of If-Then-Else Action Subsystem to Replace Multiple

Switches

ID: Title bn_0003: Use of If-Then-Else Action Subsystem to Replace Multiple Switches

Priority Strongly recommended

Scope ORION

MATLAB

Version
All

MA Check No

Prerequisites
na_0012: Use of Switch vs. If-Then-Else Action Subsystem

db_0114: Simulink patterns for If-then-else-if constructs

Description

The use of multiple switches must be appropriate to the degree of complexity of the

then and/or else action computations and the intelligence of the Simulink simulation

and code generation engines. A switch construct of more than 3 switches (1 IF path,

2 ELSE-IF paths, and 1 ELSE) must use an if-then construct for readability.

76

A 5 switch construct such as this. May be fine for simple computations.

But, the structure is more readable using if-then block and actions subsystems.

77

These statements also apply to more complicated nested and cascaded if-then-else

structures and case structure implementations.

Rationale

X Readability

X Workflow

Ã Simulation

Ã Verification and Validation

Ã Code Generation

Last Change V2.0

4.3.10.5 db_0116: Simulink patterns for logical constructs with logical blocks

ID: Title db_0116: Simulink patterns for logical constructs with logical blocks

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

78

Description

The following patterns are used for logical combinations within Simulink:

Equivalent Functionality Simulink pattern

Combination of logical signals:

conjunctive

Combination of logical signals:

disjunctive

Rationale

X Readability

X Workflow

Ã Simulation

X Verification and Validation

Ã Code Generation

Last Change V1.1

4.3.10.6 db_0117: Simulink patterns for vector signals

ID: Title db_0117: Simulink patterns for vector signals

Priority Strongly recommended

Scope MAAB

MATLAB

Version
All

MA Check No

Prerequisites None

Description The following patterns are used for vector signals within Simulink:

