Effiziente Datenanalyse mit MATLAB am Beispiel eines Batteriemodells

Dr.-Ing. Rainer Mümmler
Senior Application Engineer
Application Engineering Germany
The MathWorks GmbH
Agenda

- Demo: Battery Testing using MATLAB and Simulink
- Overview of Hardware Connectivity
- Data Analysis using MATLAB
- Q&A
Data Analysis Tasks

Access
- Files
- Software
- Hardware

Explore & Discover
- Data Analysis & Modeling

Share
- Reporting and Documentation
- Outputs for Design

Deployment
- MATLAB
- Excel
- C/C++
- Java

Automate
Battery Testing, Data Analysis, and Modeling Using MATLAB and Simulink
Model Correlation

Physical Hardware

Simulation
Model Correlation
Data Collection

- **Data collection**
 - Types of data
 - Analog/PWM/Digital
 - CAN
 - Data integrity
 - Detect intermittent connections
 - Signal threshold limits
Battery Testing Video

Starting xPC Target build procedure for model: series_eng
Generating code into build folder: C:\DATA\Demo\MATLAB\2013_BatteryTesting\TMSession\build\.
Generated code for 'series_engine_phev_midsize_2wd_TM' file
Patch bio and pt MATLAB files
Create sorted BIO
Create sorted PT
Patch xml-file

Processing Template Makefile: C:\MATLAB\R2013a64\templates\...
series_engine_phev_midsize_2wd_TM.mk which is generated
Building series_engine_phev_midsize_2wd_TM: \.

C:\DATA\Demo\MATLAB\TandM\2013_BatteryTesting\TMSession\build

Microsoft (R) Program Maintenance Utility Version 10.00.3034
Copyright (C) Microsoft Corporation. All rights reserved.

Linking ...
C:\MATLAB\R2013a64\sys\perl\win32\bin\perl C:\MATLAB\R2013a64\sys\perl\win32\bin\perl C:\MATLAB\R2013a64\sys\perl\win32\bin\perl C:\MATLAB\R2013a64\sys\perl\win32\bin\perl C:\MATLAB\R2013a64\sys\perl\win32\bin\perl
Creating library series_engine_phev_midsize_2wd_TM_xpcbuild
Example: Battery Testing Using MATLAB and Simulink

- Battery Testing:
 - Send control commands from xPC
 - Collect data using T&M devices
- Analyse data and create report
A Technical Computing Workflow for Battery Test and Data Analysis

Access
- Files
- Software
- Hardware

Explore & Discover
- Data Analysis & Modeling
- Algorithm Development
- Application Development

Share
- Reporting and Documentation
- Outputs for Design
- Deployment

Code & Applications

MATLAB, Excel, C/C++, Java, .dll

MathWorks
What hardware are you using?

Programmable instruments
- Oscilloscope
- Arbitrary waveform generator
- RF signal generator
- RF signal analyzer
- Optical spectrum analyzer

Communications interfaces
- Serial
- GPIB
- TCP/IP
- USB
- VISA
- Bluetooth

Data acquisition cards
- A/D, D/A, DIO

Frame grabbers and cameras

CAN bus devices
MATLAB Connects to Your Hardware Devices

Instrument Control Toolbox
Instruments and RS-232 serial devices

Data Acquisition Toolbox
Plug-in data acquisition devices and sound cards

Image Acquisition Toolbox
Image capture devices

Vehicle Network Toolbox
CAN bus devices using CAN and XCP protocols

MATLAB
Interfaces for communicating with everything
Data Analysis Tasks

Access
- Files
- Software
- Hardware

Explore & Discover
- Data Analysis & Modeling
- Algorithm Development
- Application Development

Share
- Reporting and Documentation
- Outputs for Design
- Deployment

Automate

Examples:
- MATLAB
- Excel
- C/C++
- Java
- .NET
- .exe
- .dll

Code:
```matlab
for k=1:max
    x = fft(dat)
    y = 20*log1
```

Before We Can Apply the Data…
Before We Can Apply the Data…

- Data collection
 - Types of data
 - Analog/PWM/Digital
 - CAN
 - Data integrity
 - Detect intermittent connections
 - Signal threshold limits

- Data analysis
 - Data filtering
 - Curve fitting
 - Smoothing
 - Data synchronization
 - Consolidate datasets with different time scales
 - Handle Missing Data
 - Drop outs
Before We Can Apply the Data…

- Data collection
 - Types of data
 - Analog/PWM/Digital
 - CAN
 - Data integrity
 - Detect intermittent connections
 - Signal threshold limits

- Data analysis
 - Data filtering
 - Curve fitting
 - Smoothing
 - Data synchronization
 - Consolidate datasets with different time scales
 - Handle Missing Data
 - Drop outs
 - Detect outliers

Data Acquisition Toolbox
Vehicle Network Toolbox

Statistic Toolbox
Curve Fitting Toolbox
Parallel Computing Toolbox
Visualizing Data with MATLAB

Access

Quick look
- Interactively generate two- and three-dimensional visualizations
- Navigate and annotate data

Explore

Explore in detail
- Use advanced visualizations
- Use application-specific visualization techniques (maps, clustergrams, …)

Customize
- Customize visualization for presentation and publication
- Automate repetitive visualization tasks

Share
Data Analysis, Signal Processing, Algorithm Development, and Modeling Toolboxes

Signal Processing Toolbox
- Create and apply your own filters to signals
- Estimate spectral response
- Generate custom waveforms
- Develop parametric models

DSP System Toolbox
- Advanced filter design including FIR, IIR, adaptive, and multi-rate

Statistics Toolbox
- Design experiments
- Develop linear and nonlinear models
- Compute descriptive statistics from test results
Data Analysis, Algorithm Development, and Modeling Toolboxes

Curve Fitting Toolbox

- Fit curves and surfaces to data using regression, interpolation, and smoothing
- Use pre- and post-processing analysis
 - Exclude outliers
 - Generate confidence intervals
 - Calculate integrals and derivatives
- Evaluate goodness of fit using:
 - Descriptive statistics such as R^2
 - Visual inspection
 - Validation

Visit www.mathworks.com for more than 20 additional toolboxes
Sharing Results from MATLAB

- Publish MATLAB scripts
 - Quick, convenient documentation
- Automatically generate structured reports
- Export data and graphics to standard and custom file formats
Deploying Applications with MATLAB

- Give MATLAB code to other users
- Share applications with end users who do not have MATLAB
 - Use MATLAB Compiler™ to create stand-alone executables and shared libraries
 - Use Compiler add-ons to create software components
What about Real-Time Testing?

- **Challenge:** To run, test, and prove your Simulink design with your hardware under test at its normal operating frequency, speed, or timing.

- **Real-time testing includes:**
 - Rapid control prototyping (RCP)
 - Hardware-in-the-loop (HIL) simulation
 - Other applications needing real-time determinism

- **Application areas:** Aerospace test labs, automotive controls, mechatronics and robotics, industrial automation and machine controls, medical devices, office equipment

- **Solution:** Use xPC Target for real-time testing

Learn more at www.mathworks.com/products/xpctarget
Data Analysis Tasks

Access
- Files
- Software
- Hardware
 - Code & Applications

Explore & Discover
- Data Analysis & Modeling

Share
- Reporting and Documentation
 - PDF
 - .doc
 - .html
- Outputs for Design
 - Codes
- Deployment
 - MATLAB
 - Excel
 - .NET
 - C/C++
 - Java
 - .dll
 - Package App
Summary

- One Environment for testing, data acquisition, analysis and simulation
- Efficient functions for analysis
- Use analysis results for further simulations
Q&A