Optimal optimieren mit MATLAB – so geht’s

Dr. Maka Karalashvili
Application Engineer
MathWorks
Why Optimization?
For example

Maximize Fuel Efficiency

Minimize Risk

Maximize Efficiency in terms of e.g., Profits
Optimization Approaches in MATLAB

- **Gradient Based**
 - Finds local minima/maxima
 - Applicable for large scale problems with smooth objective function
 - Faster/fewer function evaluations

- **Global Methods**
 - No gradient information required
 - Solve problems with non-smooth, stochastic, discontinuous objective function
Gradient based Optimization Solvers

- **Nonlinear minimization**
 - `fminunc`: unconstrained
 - `fmincon`: linear and nonlinear constraints
 - Supply Gradient and Hessian functions to speed up

- **Constrained curve fitting with least squares solvers**
 - `lsqinlin`: linear least-squares subject to linear constraints
 - `lsqnonlin`: nonlinear least-squares with bound constraints

- **Linear or quadratic problems**
 - `linprog`: linear problems
 - `quadprog`: quadratic problems
Why use Global Optimization?

- What if the problem has multiple local minima
- What if the gradient is undefined
- What if the problem is stochastic
- What if some variables are binary or integer

Need a solver that can explore the solution space and not fall into local minima.
Global Optimization Solvers

- **Global Search, Multi Start**
 - Well-suited for smooth objective and constraints
 - Return the location of local and global minima

- **Genetic Algorithm, Simulated Annealing**
 - Many function evaluations to sample the search space
 - Works on both smooth and non-smooth problems

- **Pattern Search**
 - Fewer function evaluations
 - Does not rely on gradient calculation
 - Works on both smooth and non-smooth problems
Global Optimization Solvers

- Mixed-Integer Optimization using `ga`
 - Allows linear or nonlinear mixed-integer problems
 - Allows you to specify that certain variables are integer valued
 - Can have any objective function, bounds, and inequality constraints
 - Can indirectly include equality constraints
Optimization APP
Speed up Optimization using Built-in Parallel Support

1) Gradient Estimation
 - fmincon
 - fminimax
 - fgoalattain

2) Iterative sampling of local solution space
 - MultiStart
 - ga, gamultiobj
 - patternsearch
Key takeaways

1. **Solve Wide Variety of Problems**
 - Linear, quadratic, nonlinear, least squares (Optimization Toolbox)
 - Nonlinear, nonsmooth, stochastic, mixed-integer (Global Optimization Toolbox)

2. **Set-up, Run, and Monitor Optimizations**
 - Optimization App
 - Automatic code generation
 - Customizable plot functions

3. **MATLAB Environment**
 - Integrated Numeric, Graphics, Symbolic Math
 - Parallel Computing
Thank You

Any Questions?
Local Optimization

- Interior-point quadratic programming solver
 - Solves large-scale QP problems faster
 - Performance example:
 Calculate optimal power flow on the electric grid

<table>
<thead>
<tr>
<th>System</th>
<th>Equality Constraints</th>
<th>Inequality Constraints</th>
<th>QP solver Active-set</th>
<th>New QP solver (large scale)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows-64</td>
<td>83</td>
<td>642</td>
<td>12.3 s</td>
<td>0.58 s</td>
<td>21 x</td>
</tr>
<tr>
<td>8GB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows-64</td>
<td>52,179</td>
<td>52,744</td>
<td>---</td>
<td>24 minutes</td>
<td></td>
</tr>
<tr>
<td>8GB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimization APP

Problem Setup and Results

Solver: fmincon - Constrained nonlinear minimization
Algorithm: SQP

Figure 1

MATLAB EXPO 2013