Vom Konzept zum Modell physikalischer Systeme
Smarter Modellieren mit Simscape™

Maximilian Apfelbeck
MathWorks

München, 9.07.2014
Key Take-Aways

- Create accurate, reusable plant models quickly and easily
- Intuitive and easy to read multi-domain modeling approach
- Optimize system performance
 - Develop in a single environment
Model-Based Design
Development Process

- Requirements
- System Design
 - Environment
 - Physical Components
 - Algorithms
- Component Design
- Research
 - Data Analysis
 - Data Modeling
 - Algorithm Development
- Subsystem Design
- System-Level Specification
- Continuous Test and Verification
- Automatic Code Generation
- Executable Specifications
- Design with Simulation
- Integration testing
- Code Verification and Validation
- User Acceptance Testing
- Complete Integration & Test
- System-Level Test Integration & Test

Implementation
- Embedded Software
 - C, C++
- Digital Electronics
 - VHDL, Verilog
- MCU
- DSP
- FPGA
- ASIC

Generated Models
Model-Based Design

Multi-Domain Modeling and Algorithm Development

Methods for modeling systems in different domains

Data Flow (Block diagram)

Physical Modeling (Schematic)

Event-Driven Systems

Programing Language (Textual)
What Is This?

\[V_{in} = K_b \omega + i_m R_m + L_m \frac{di_m}{dt} \]

\[T = K_t i_m - D \omega - J \frac{d\omega}{dt} \]
How To Model This System?
How To Model This System?
Fast and Efficient Plant Modeling

- Simulink is best known for signal-based modeling
 - Causal, or input/output

- Simscape enables bidirectional flow of power between components

- System level equations:
 - Formulated automatically
 - Solved simultaneously
 - Cover multiple domains
Through & Across Variables

- Abstract to a physical network
- All nodes have the same pressure (across variable)
- Sum of flows (through variables) at a node is zero
- Each component must specify an equation involving the through and/or across variables at its boundary
Physical Systems in Simulink

Multidomain physical systems

- Mechanical
- Hydraulic
- Electrical
- Thermal
- Pneumatic
- Magnetic
- Custom Domains via Simscape Language

Simscape

SimMechanics

Multibody mechanics (3-D)

SimPowerSystems

Electrical power systems

SimHydraulics

Fluid power and control

SimElectronics

Electromechanical and electronic systems

SimDriveline

Mechanical systems (1-D)
Simscape Add-on Libraries

- **SimDriveline™**
 - Gears, leadscrew, clutches, tires, engines
- **SimElectronics®**
 - Actuators, sensors, and semiconductors
- **SimHydraulics®**
 - Pumps, actuators, pipelines, valves, tanks
- **SimMechanics™**
 - Multibody systems: joints, bodies, frames
- **SimPowerSystems™**
 - Three-phase electrical networks
Physical Modeling Best Practice

- Structure your system and componentize it
- Get familiar with the available blocks
- Build incrementally
- Write test scripts/harnesses
- Use appropriate level of fidelity
- Add dampers, fluid volumes or capacities to un-stiffen the system
DC Motor Modeling Options

- Pre-build components
- Equivalent circuit model with Simscape components
- Define a custom component using Simscape language
Viewing Simscape Simulations Results

ssc_explore

- Explore simulation results from entire physical network
 - Select multiple signals
 - Overlay or separate plots
 - Arrange plots
 - Extract plot to separate window

- Spend more time analyzing, less time simulating

- Download from MATLAB Central

Developing Control Systems

- Implement high-fidelity nonlinear plant models
- Extract linear model for use with linear control theory
- Explore interaction between control system and plant
- Optimize system performance
Key Take-Aways

- Create accurate, reusable plant models quickly and easily
- Intuitive and easy to read multi-domain modeling approach
- Optimize system performance
 - Develop in a single environment
Backup
Simscape Editing Modes

- Share models with other Simscape users
 - Simulate, analyze, generate code without purchasing extra licenses

<table>
<thead>
<tr>
<th>Function</th>
<th>Full Mode</th>
<th>Restricted Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add or delete regular Simulink blocks</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Change Simulink solver, simulate</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Change numerical parameters</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Access PowerGUI functions, settings</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Generate code</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Add/delete blocks from add-on products</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Make or break physical connections</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Change block parameterization options</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Change Simscape Local Solver</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Backup
Simscape Equation Formulation and Simulation

- Simscape performs several steps before starting a simulation
 - Diagram parsing
 - Symbolic simplification
 - Index reduction

- These steps are performed automatically to ensure robust and quick simulations