As the crow flies – Model to Implementation via Automatic Production Code Generation

aka SLX2C – State-of-the-Art from Model to Embedded Code

Michael Fröstl
Pilot Engineering, Production Code Generation
MathWorks

http://www.mathworks.de/embedded-code-generation/
switch(braindump)
{

case 'Applications':
A Toyota engine.

The USS Makin Island.

Van Helvoort (left) and van Bakel with a Philips Healthcare MRI scanner.

The HB-SIA aircraft on a test flight over San Francisco Bay.

The AirSonea device, which connects to an asthma patient’s smartphone ...

Alstom Grid’s HVDC demonstrator system with power converter modules.

Sonova’s hearing aid and cochlear implant solutions.

The IRIS observatory.

http://www.mathworks.com/company/user_stories
case 'Programming':
case 'Hardware':
case 'Operating Systems':
Green Hills® Integrity RTOS

Texas Instruments™ DSP/BIOS™

OSEK-OS

Embedded Linux®

QNX® Neutrino® RTOS

Android™

Wind River® VxWorks®

Microsoft® Windows Embedded
case 'Standards':
default:
 printf("Wrong session?");
}
MBD_Overview();
TEST & VERIFICATION

INTEGRATION

ANALYSIS • SPECIFICATION • DESIGN

RESEARCH ACTIVITIES

REQUIREMENT DOCUMENTS

MODEL

Physical Components

Architecture

Constraints

Environment

Algorithms

IMPLEMENTATION

C, C++

VHDL, Verilog

Structured Text

MCU, DSP, FPGA, ASIC, PLC, PAC

TEST & VERIFICATION

Physical Modelling mit Simscape

Standardkonforme Absicherung mit Model-Based Design

MATLAB für FPGA Design und ASIC Prototyping

Rapid Prototyping und HiL-Simulation mit Simulink Real-Time

Mit Polyspace die Qualität des generierten und handgeschriebenen Codes effektiv verbessern
switch(topics)
{

case ‘Code Generation – Top 5’:

- with slope and bias encoding scheme: \(V = 1*Q + 1 \)
IP Protection
Password Protected Models

Protect design IP for models and generated code

- Support options
 - Simulation: Allow Accelerator mode simulation
 - Code generation: Include obfuscated code to support code generation
 - *(New in R2013b)* Read-only view: Web view of model
 - *(New in R2013b)* Password protection: Access protected by password
AUTOSAR Roundtrip
AUTOSAR Roundtrip with Simulink Merge

Update and merge AUTOSAR authoring tool changes into Simulink models for iterative round-trip workflows

- `updateModel` method automates ARXML import and merge
 - Simulink model
 - Workspace variables
 - AUTOSAR configuration

- Generates report of changes with hyperlinks to model
- Identifies changes left for user

Modellbasierte Entwicklung Eingebetteter Systeme für AUTOSAR mit der MathWorks-Toolkette
RAM Optimization
Average Global RAM & Unnecessary Data Copy Reduction Since R2008b (Using 70+ Industry Models)

Global RAM Usage

Data Copy Measurement
Simulink Data Dictionary
Code Generation for Simulink Data Dictionary

Manage data outside of base workspace

- Componentization
- Scalability and performance
- Change tracking and differencing
- Integration with Simulink Projects
- Code generation
case ‘Targets’:
Connect MATLAB and Simulink to Hardware

Connect MATLAB® and Simulink® to hardware platforms for project-based learning, signal processing, computer vision, communications, data acquisition, instrument control, embedded systems, and more. Use low-cost hardware platforms like Arduino® and Raspberry Pi™, embedded systems like ARM® and Zynq®-based architectures, or high-end systems for real-time testing. Find the right solution to help you prototype and implement your applications with MATLAB and Simulink.

Search Hardware Support from MATLAB and Simulink

<table>
<thead>
<tr>
<th>Vendors</th>
<th>Applications</th>
<th>Product Families & Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select vendor</td>
<td>Select application</td>
<td>Select product or family</td>
</tr>
<tr>
<td>Or enter a keyword:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Learn more](http://www.mathworks.de/hardware-support/home.html)
Training Services

Developing Embedded Targets
Advisory Service
case ‘Getting FREEd’:
Embedded Coder Support Package for Freescale FRDM-KL25Z Board

- Integration of the GNU-ARM Toolchain
- Automatically:
 1. Generates C code
 2. Compiles code
 3. Loads binary to hardware

- Now available via Support Package Installer
“Go Green” – Getting Started

Blink a LED

- Create a new Model
- Set it up for the Freescale Target
- Add Blocks (incl. I/O)
- Generate code
- Deploy to the hardware
default:
 printf("Brain up-to-date!");
}
TEST & VERIFICATION

INTEGRATION

ANALYSIS • SPECIFICATION • DESIGN

Model

Physical Components

Algorithms

Architecture

Constraints

Environment

RESEARCH ACTIVITIES

REQUIREMENT DOCUMENTS

IMPLEMENTATION

Test Cases

C, C++, VHDL, Verilog, Structured Text

MCU, DSP, FPGA, ASIC, PLC, PAC

TEST & VERIFICATION

RESEARCH ACTIVITIES

REQUIREMENT DOCUMENTS

ANALYSIS • SPECIFICATION • DESIGN

Model

Physical Components

Algorithms

Architecture

Constraints

Environment

IMPLEMENTATION

Test Cases

C, C++, VHDL, Verilog, Structured Text

MCU, DSP, FPGA, ASIC, PLC, PAC

INTEGRATION

Test Cases

FPGA, ASIC

Structured Text

PLC, PAC

MCU, DSP

VHDL, Verilog

C, C++