Model Based Design approach for HVDC applications

MATLAB-EXPO, Munich 2014-07-09

Markus Engel, Siemens AG, E T TS PLM C&P
Co-Authors: Sebastian Behnisch, Dr. Christian Siegl, Christina Zenk, Marcos Pereira, Kevin Römer
Agenda

- Current situation
- Challenges
- Goals & Constraints
- Solution
- Conclusion
- Outlook

AC Grid 1

\[\sim \quad = \quad \text{DC} \quad = \quad \sim \]

AC Grid 2
Current situation

Turnkey solution business & customers with high buying power

We have to deal with manifold contributions – see hawker‘s tray of C&P

Control & Protection System

... and a lot more...
Challenges: System & Software engineers work on parallel paths ...

Electro-Magnetic Transients (EMT) simulation for development & optimization of
- control parameters & algorithms
- steady state & dynamic performance
- protection coordination

Software development in Step7/CFC (graphical & block-oriented language) & C/C++ / FPGA applications for
- closed loop control
- open loop control
- protection and measurement
Challenges: ... with the same objects developed in different tools and they are dependent from each other!

EMT simulation needs
- Control & protection algorithms
- Communication delays
- ...

Software development needs
- Parameters / structure for control algorithms
- ...

Algorithms for
- open-loop
- closed-loop
- Protection
Goal:
One platform independent Model Based Design tool for all targets

Constraints:
- Different automation platforms to be supported
- EMT simulation program PSCAD is state-of-the-art in HVDC business (often PSCAD models have to be delivered to customers)
- System & software engineers work in different departments
Which integration platform fits best? MATLAB/Simulink seems to be a feasible approach for HVDC

<table>
<thead>
<tr>
<th>Criteria</th>
<th>PSCAD</th>
<th>CFC/TDC</th>
<th>MATLAB/Simulink</th>
</tr>
</thead>
<tbody>
<tr>
<td>integration in software development suite</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>rate of coverage of development lines</td>
<td>--</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>test/commissioning support</td>
<td>o</td>
<td>++</td>
<td>o</td>
</tr>
<tr>
<td>independency from automation platform</td>
<td>o</td>
<td>--</td>
<td>++</td>
</tr>
<tr>
<td>working in distributed teams</td>
<td>o</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>know-how protection</td>
<td>o</td>
<td>o</td>
<td>+</td>
</tr>
<tr>
<td>fulfillment of single-source principle</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>life cycle costs</td>
<td>o</td>
<td>o</td>
<td>+</td>
</tr>
</tbody>
</table>
Model Based Design approach using MATLAB/Simulink & code generation with Embedded Coder
MATLAB/Simulink & PSCAD
Approach is feasible, but some issues to be investigated!

- Main approach:
 - Unchanged use of C-code produced automatically by Simulink
 - Generation of lib files to be used by PSCAD

- Optimal workflow to be developed with PSCAD users:
 - Accessibility of parameters
 - Avoid jumps between Simulink and PSCAD as far as possible

- Fortran wrapper for interfacing with PSCAD necessary
- Benchmark: Comparison of simulation results of Simulink-based block and original PSCAD block without deviations
MATLAB/Simulink & Simatic TDC: Referenced models enable variant management, distributed engineering and efficient version control

One main model → link to multiple and hierarchical referenced models

Implementation of different variants (e.g. different closed loop control structures) of one referenced model possible (same external interfaces)

Integration with version control tools (e.g. SVN or GIT) possible

Referenced models enable distributed engineering

Clearness due to hierarchical structure
MATLAB/Simulink & Simatic TDC: Reuse of well-proven TDC library functions by C-macros and use of Legacy Code Tool

Integration of existing macros in Simulink:
- C-Source file: hvdc_ccp_lib.c
- H-Header file: hvdc_ccp_lib.h

Use of Legacy Code Tool:
- Generates the following files:
 * .mex file for simulation
 * .tlc file for Simulink Coder
- Generation of library for Simulink
MATLAB/Simulink & Simatic TDC:

Automatic C-code generation for use in TDC function block generator

Conventions defined and workflow tested

Conventions:
- Block names Simulink = TDC connector names
- Signalnames in Simulink = comments in TDC
- Single task within one model
- Same datatypes

TDC function block generator generates library

Additional connectors compared to original:
- Version of Simulink model
- Enable/disable input
- Failure output
- Internal variables output

Referenced model „CRPC“

MATLAB-Script

Source files
MATLAB/Simulink & Simatic TDC:
Runtime of Simulink generated function blocks is at least 50% less than original TDC function blocks by applying feasible granularity of packaging.

Performance advantage of Simulink-generated function blocks can be reached by packaging of suitable number of function blocks within one Simulink model.

Stateflow suitable for modelling of plant sequences.

1:1 conversion of standard function blocks from Simatic TDC to Simulink not feasible.
MATLAB/Simulink & Simatic TDC:
Simulink concept of constant values and signal busses is useful for parameterization of functions

- All parameters are handled within separate referenced models, input e.g. via .csv file
- Distribution to "consumers" via signal bus
- Existing procedures / tools for parameterizing remain as they are
MATLAB/Simulink & DSP

Benchmark against interface-identical software of customer project positive

Critical issues:

• Code efficiency (due to very fast control cycle within µs-area)
• Proof of accurate dynamic performance

Benchmark executed in the following steps:

1. Implementation and test of developed algorithms in MATLAB/Simulink
2. Benchmark between automatic generated Simulink-based software and (plain C) software of customer project
 a) in offline simulation environment (PSCAD)
 b) in realtime test environment

Benchmark Results:

- Control accuracy & dynamic performance nearly identical
- Runtime performance of Simulink-based control 14% better than original C-code
Conclusion

- Overall feasibility of approach is proven and shows significant advantages!
 - platform independency
 - performance
 - savings in project engineering

- Closed loop control algorithms migrated into Simulink models and tested

- „One click solution“ for generation of TDC-and PSCAD-lib's
Outlook

- Migration and test of open-loop and protection algorithms
 - Use of stateflow
 - Simulink based (automatic) component test setup
 - Integration test in realtime simulation environment
 - Benchmark of runtime behaviour against original software

- Integration of different components' models
 - Enable PC based integration tests

- Evaluation of Simulink’s EMT simulation capabilities
Thank you for your attention!

markus.engel@siemens.com