Entwicklung und Testen von Robotischen Anwendungen mit MATLAB® und Simulink®

Maximilian Apfelbeck, MathWorks

MATLAB EXPO 2015
DEUTSCHLAND
Robot Teleoperation

Control Device: ROS-Node

Turtlebot: ROS-Master

Controller: ROS-Node
3 Key Take Aways

- Fast algorithm design & testing
- Team collaboration
- Connectivity to Robots
Robot Architecture

- Sensors
- Actuation
- Intelligence / Algorithms
- Infrastructure
Challenge
Develop control systems for a two-armed mobile humanoid robot with 53 degrees of freedom

Solution
Use Model-Based Design with MATLAB and Simulink to model the controllers and plant, generate code for HIL testing and real-time operation, optimize trajectories, and automate sensor calibration

Results
- Programming defects eliminated
- Complex functionality implemented in hours
- Advanced control development by students enabled

“Model-Based Design and automatic code generation enable us to cope with the complexity of Agile Justin’s 53 degrees of freedom. Without Model-Based Design it would have been impossible to build the controllers for such a complex robotic system with hard real-time performance.”

Berthold Bäuml
DLR
Model-Based Design
Continuous Verification and Validation

Requirements
System Design
- Environment
- Physical Components
- Algorithms

System-Level Specification

Component Design
Subsystem Design

Research
- Data Analysis
- Algorithm Development
- Data Modeling

System-Level Integration & Test

Integration testing
Code Verification and Validation
Subsystem Integration & Test

User Acceptance Testing
Complete Integration & Test

Implementation
- Embedded Software
 - C, C++
- Digital Electronics
 - VHDL, Verilog
- MCU
- DSP
- FPGA
- ASIC
Model-Based Design
Multi-Domain Modeling & Algorithm Development

- Algorithms
- Physics
- Environment

Requirements
- System-Level Specification

Algorithms
- Programming Language
- Data Flow (Block diagram)
- Event Driven (State Machine)

Physics
- Physical Modeling

Environment
- Simulink 3D Animation

Research
- Data Analysis
- Algorithm Development
- Data Modeling

Integration & Test
- Complete Integration & Test
- Code Verification and Validation
- Integration testing
- User Acceptance Testing

Implementation

DSP
FPGA
ASIC
Embedded Software
Digital Electronics
C, C++
VHDL, Verilog
MCU

Requirements
- System Design
- Physical Components
- Environment

Algorithms
- Physics
- Environment

Programming Language

Data Flow (Block diagram)

Event Driven (State Machine)

Integrate existing legacy code
Without Robotics System Toolbox

Deliver a Robotics Application

Challenges:
• Easily access of sensor data on robots
• Multi-platform support
• Simulation of environment (not the robot itself)
• Ready-to-use algorithms

Powerful but not easy

Robotics System Toolbox
Robotics System Toolbox in R2015a

Main Functionality

1. Access ROS capabilities from MATLAB (I/O)
2. Access ROS capabilities from Simulink (I/O and C++ code generation)
3. Algorithms for autonomous wheeled robots
4. Application Examples for working with TurtleBot and Gazebo (robot simulator)
Speed-up Algorithm Design with System Toolboxes

- **Video & Image Processing**
 - Image Analysis
 - Video Analysis (motion tracking)
 - Image Enhancements
 - Scene Reconstruction

- **Signal Processing**
 - Algorithm Design
 - Time and frequency domain
 - Frame-based processing
 - Digital filters (FIR, IIR, multirate, adaptive)
Model-Based Design
Continuous Verification and Validation

- Requirements
- System Design
 - Environment
 - Physical Components
 - Algorithms
- Component Design
- Subsystem Design
- Subsystem Implementation
- Implementation
- Code Verification and Validation
- Integration testing
- Subsystem Integration & Test
- Complete Integration & Test
- User Acceptance Testing

Research
- Data Analysis
- Algorithm Development
- Data Modeling

System-Level Specification

Research
- Data Analysis
- Algorithm Development
- Data Modeling

C, C++, VHDL, Verilog
MCU, DSP, FPGA, ASIC
Model-Based Design

Generate ROS C++ node

- C/C++, VHDL and PLC-Code Generation from one model
- Support for Fixed Point Data Format
 - Automatic scaling
 - Supported in Simulation and Code-Generation
- Easy integration of legacy C/C++-Code
- Generate a ROS C++ node from a Simulink model and deploy it on a robot
3 Key Take Aways

- Fast algorithm design & testing

- Team collaboration

- Connectivity to Robots