ECU Production Code Generation

15 June 2004

Tom Erkkinen and Steve Toeppe

Simulink 6
for Model-Based Design

Agenda

- Introduction
- New Features
- Success Stories
- Process Capabilities
- Next Steps
Production Code Overview

MathWorks Production Code Focus

- Production code generation is a top corporate initiative
 - Working closely with automotive and aerospace companies
 - Real-Time Workshop® Embedded Coder generates production code
- Recent results:
 - Automatic code smaller than production hand code\(^1\)
 - One million lines of automatic code in safety-critical systems\(^2\)

\(^1\) Visteon, SAE Technical Paper 2004-01-0269, March 2004
\(^2\) Honeywell, FAA Software Tools Forum, May 2004
Agenda

- Introduction
- **New Features**
- Success Stories
- Process Capabilities
- Next Steps

Production Code User Requests

Systems Engineering
- **Modeling and ECU prototyping**
 - Large scale architecture
 - Multiple domains
 - Data management

- **Software design and ECU code**
 - Code efficiency
 - Fixed point
 - Module packaging
 - Multirate systems
 - Embedded targets

Project Management
- **Processes and teams**
 - Configuration management
 - Interfaces
 - Documentation
 - Seamless tool chain

Release 14 provides a complete ECU development environment that maximizes team efficiency
System Architecture

- Modular Development
 - Model Referencing
 - Incremental and iterative development
 - Configurable items
- Incremental Code Generation
 - Model Blocks
 - Persistent identifiers
- Component Interface
 - Non Virtual Buses
 - C structures

Simulink 6 has immediate code generation support

Multiple Domain System Modeling

Systems containing:
- Sensors and Actuators
- Environment or Plant
- Application or Controller

Are naturally modeled with:
- Simulink
- Stateflow
- Signal Processing Blockset
- Embedded MATLAB Fcn
- SimMechanics
- SimPowerSystems
- Much more ...

Simulink 6 has complete code generation support
Multiple Domain System Code Generation

Real-Time Workshop Embedded Coder 4 supports and extends all Real-Time Workshop 6

One code generator for multiple uses

Rapid Prototyping

Real-Time Workshop Embedded Coder (ERT)

Real-Time Workshop (GRT)

Production Code

Continuous time

Module packaging

Simulink Verification and Validation

- Develop requirement based test
- Validate designs
- Establish coverage
- Detect flaws
- Trace requirements

Requirements appear in code
Simulink Data Management

Model Explorer and Simulink Data Objects
- Create Data Dictionary
- Manage Simulink and Stateflow data
- Use MPT data objects for production data
- Model workspaces

Code Efficiency

- **R14 includes many new optimizations**
 - Optimized fixed-point operations (e.g., division)
 - For-loop fusion
 - Enhanced inlining of Stateflow library charts
 - Improved expression folding
 - Improved dead-path elimination
 - Efficient implementation of absolute and elapsed time
 - And much more…
Fixed-Point Optimizations

Multiple operations combined as a single shift right.

```c
/* Outport: '<Root>/Out1' incorporates:
 * Product: '<Root>/Divide'
 */
rtY.Out1 = (int16_T)(rtU.In1 >> 3);
```

For-loop Fusion

- For-loops are fused inside Simulink and Stateflow
- Complements expression folding

```c
for(i1=0; i1<10; i1++) {
    if(rtU.In1[i1] * 3.0 >= 0.0) {
        rtb_SW2[i1] = rtU.In1[i1] - rtDWork.Delay_DSTATE[i1];
    } else {
        rtb_SW2[i1] = (rtDWork.Delay_DSTATE[i1] - rtU.In1[i1]) * 5.0;
    }
    rtY.Out1[i1] = rtb_SW2[i1];
    rtDWork.Delay_DSTATE[i1] = rtb_SW2[i1];
}
```

```c
>> rtwdemo_forloop
```
Simulink Fixed Point

- Fixed-point Blockset fully consolidated with standard Simulink library
- Unified fixed-point functionality now added to more blocks
- Discrete integrators with fixed-point types now support triggered sample times
- Bit-true simulation and code generation for multiplication and division with non-zero bias
- Optimized fixed-point code generation across products

Engineers want to use standard Simulink blocks

Module Packaging Features

- Code and Data Templates
- Model Explorer Data Dictionary
- Customization Hooks For Extra Files
- Custom Comments
- Normal files
- Special files
- MPF Files
- Data and User Types
- Naming Rules
- Extra files
- Customization Hooks
- Additional Custom Files
- Specific Placement
- MPF Files
- Data Dictionary
- Customization Hooks
- Application management

For mass production, company specific needs
Based on production pilot success
Custom Storage Classes

- Create custom storage classes
- Integrate production code data

Multirate Systems

- Rate grouping: Each rate into separate function
- Target independent (priority based) rate transition block for periodic and asynchronous data transfers
- Sample time constraints for models and subsystems
- Enhanced asynchronous event support
- Production quality Absolute and Elapsed time

Multirate is now much more efficient, clearer, and better for production
Interfaces

- Simulink-based
 - External Mode
- Target-based
 - C-API
- Host-based
 - ASAP 2

Simulink/Real-Time Workshop offer a synchronized model/code platform for other technologies to leverage

Embedded Targets

- Support for any target
 - ANSI-C
 - ISO-C (optimized math)

- More Support for
 - Motorola® MPC555 (incl. 56x)
 - Motorola® HC12
 - Infineon C166® Microprocessor
 - TI C6000™ DSP
 - TI C2000™ DSP
 - OSEK/VDX®
New Demo Suite

- Full suite of demos showing seamless modeling and code generation environment

>> rtwdemos

Agenda

- Introduction
- New Features
- **Success Stories**
- Process Capabilities
- Next Steps
Real-Time Workshop Embedded Coder

Automotive Highlights

Toyota and Denso
OEMs and suppliers in mass production

Visteon Powertrain
Automatic code smaller than hand code

Caterpillar
Single tool for rapid prototyping and production code

Delphi
Set & Forget Automatic Climate Control

Motorola Powertrain & Chassis Systems
Second-generation fixed-point use

Jaguar
In-vehicle rapid prototyping

Siemens VDO
“Excellent local support from MathWorks Germany”

ECU Production Process

Define Requirements

Sim

System-Level Specification

RP

Subsystem Design

OTRP

PCG

Subsystem Integration & Test

SIL

System-Level Integration & Test

PIL

Vehicle Integration, Test & Calibration

HIL

Implementation

Version control

Requirements management

Documentation

Sim: Simulation
RP: Rapid Prototyping
OTRP: On-Target Rapid Prototyping
PCG: Production Code Generation
SIL: Software in Loop
PIL: Processor in Loop
HIL: Hardware in Loop
Next Steps

- Production code recorded webinar series (R13)
 - www.mathworks.com/webinars

- Attend RT04 training class (R14)
 - www.mathworks.com/training

- Contact your local MathWorks representative

- Meet MathWorks developers at IAC
Conclusions

- Production code success is currently being achieved

- MathWorks Release 14 will make more customers, more successful

MathWorks is deeply committed to satisfying your production code generation needs