Model based development of Cruise Control for Mercedes-Benz Trucks

M. Wünsche, J. Elser
15.06.2004

Agenda

- Introduction
 - functional and technical overview
- Project description
 - motivation and development process
- C-Code analysis
 - analysing and documentation methods
- Control-module
 - Structure, metrics and co-operation methods
- Auto-Code generation
 - experiences and results
- Testing
 - SIL, PIL and HIL test methods
World wide application

- Cruise Control is used in several commercial vehicles e.g.
 - Heavy duty trucks
 - Delivery Trucks
 - Coaches
 - working machines

- Cruise Control is used in several market specific vehicles in
 - Europe
 - Turkey
 - Brazil
 - future: NAFTA

Functional Overview

- **Combined Cruise Control**
 - Drive Mode
 - only drive torque allowed
 - Brake Mode
 - only brake torque allowed
 - permanent open outlet valve
 - butterfly valve
 - drive line retarder, e.g. eddy current

- **Adaptive Mode**
 - separate controller
 - constant distance regulation

- **Road Speed Limiter**
 - limits drive torque
 - activates Brake Cruise Control
Controller Overview

CC-Lever
Acceleration Pedal
CAN - Signals

Governor Limiter

driver set value
governor desired value

desired speed
Hysteresis

Brake mode

Display

act. vehicle speed

Speed Governor

act. vehicle acceleration

Distance Governor

a

a'

Distance Governor

Engine

T

T'

Drive - Brake Switch

Advantages
- reuse of reliable functionality
- reuse of known scaling
- model based restructuring
- simulation based function verification
- one step fixed point code generation

World wide application needs functional extension
- reengineering of Cruise Control was necessary
- Project of model based software development

Auto code generation
(Real-Time Workshop, Embedded Coder)

m-script based build process

hand written frame code

Project description
C - Code analysis

- Analysis steps
 - Study of documentation
 - Consulting the developers
 - Automatically C-code analysis
 - Modelling of complicated code parts

- Analysis results
 - Structure charts
 - Function and variable database

- Requirements
 - Use cases
 - Simulation models

Reengineering Tool
“Analyzer”

- Automatic C-Code analysis tool
- Developed in R/T Department of DaimlerChrysler in an European research project
- Outputs
 - Structure charts
 - Function trees
 - Variable lists
 - Relation charts

SQL like access
Functions list
List of related variables
Cruise Control Model

- Model consists of:
 - 16 libraries
 - 4MB mdl-files
 - 2 MB Simulink
 - 2 MB Stateflow
 - 3,000 blocks
 - 140 inputs
 - 40 outputs
 - 340 parameters

- Co-operation:
 - Model structure is built up in CVS
 - Several programmers simultaneously

Co-operation methods

- Interface blocks:
 - Encapsulate modules
 - Data type and scaling of each signal will be checked
Tool chain for auto-code generation

- One supplier tool chain
 - Simulink / Stateflow
 - Fixed-Point blockset
 - Stateflow Coder
 - Real-Time Workshop Embedded Coder
- no auto scaling used in the project
- Fixed point blockset
 - most of the Simulink blocks can be used for float and fixed point simulation
- Embedded Coder
 - adjustment of settings was sufficient to receive desired code appearance
 - user defined storage classes improve code efficiency

Main steps for code optimisation

- **RAM: 410 → 210 Byte**
 - Top level function-call scheduler (1)
 - Using bit-fields in exported internal signals (2)
 - Using bit-fields in generated data structures (3)
 - Elimination of intermediate interface variables (4)
- **STACK: 220 → 80 Byte**
 - Some subsystems realised as atomic functions
 - Elimination of the most 32bit operations
 - Redesign of some atomic subsystems
Hand written vs. Auto code

- RAM effort of Auto-Code is 16% less than optimised hand written code!

Test step overview

- Vehicle Test
- Auto-Code Evaluation
- SIL Simulation
- Module Test
SIL - Simulation

Interactive tests, test-database with predefined tests and free combination of both

Auto-Code Evaluation

Deviation has to be zero!
HIL Tests

- Real-Time vehicle simulation
- Real-Time sensor simulation
- Stimulation by drive cycles
- Measuring by CAN-ID’s
- Real vehicle-CAN
- Software-module
- real controller hardware and software

Project schedule

- Design phase
 - C-Code analysis
 - Requirements documentation
 - Structure development
 - Structure verification
 - Modelling of basic functions
- Winter test drive
 - basic functionality
 - ABS / ASR functionality
- Extending phase
 - Modelling of additional functions
 - HIL - testing
 - Auto-Code evaluation
- Summer test drive
 - Final inspection of the whole functionality

Truck Product Creation (4P)
Conclusions

Results
- Project needs only 18 month until release
 - including analysis, restructuring, modelling, and testing
- SIL based function development
 - high state of maturity before vehicle tests start
 - higher test efficiency
 - desktop debugging instead of debugging in vehicle
- Code generation
 - Embedded Coder meets our demands
 - code efficiency and readability like hand written code
- Project aims could be reached in time!

Experiences
- Well defined model structure
 - is essential base for all work, especially in stateflow parts
 - allows multiple use of the feature
 - is a stable base of further enhancements
 - gives easy overlook of complex functions
- Model reviews
 - efficient method of model optimising
 - shows possible incorrect parts
- Code evaluation
 - manual code reviews not possible because the whole code will be renewed each time
 - automatic code evaluation is necessary

Truck Product Creation (4P)