Model-Based Engine Calibration

International Automotive Conference
15 June 2004

Dr David Sampson
The MathWorks
Model-Based Calibration: Outline

- The concept
- Example applications today
 - Gasoline application for passenger cars
 - Diesel application for off-road
- Future directions
- This is of interest to engineers involved in
 - Calibration
 - Dynamometer testing
 - Engine control strategy design
 - ECU software and hardware validation
 - Vehicle simulation that includes powertrain
Setting The Scene

Who is driving engine development?
- Customers: better performance, better economy
- Regulators: lower emissions
- Hardware designers: more controllers, fewer compromises
- Competition: lower cost of development

The result is…
- Tougher performance targets
- More complexity
- More pressure to reduce development costs
Calibration
(The Narrow Definition)

- Calibration software is for editing values in lookup tables
Model-Based Calibration

Experiment Design → Data Collection → Data Modelling → Calibration → Implementation
Gasoline Application: Problem Statement

- 2.2 litre gasoline engine with dual independent variable valve timing
- Find best settings of spark timing, inlet cam timing and exhaust cam timing (versus speed and load)
- Objective is best brake specific fuel consumption
- Constraint is exhaust temperature
Gasoline Application: Design of Experiments

- Space-filling design with 253 spark sweeps
Design of Experiments

Benefits
- Significant reductions in experimental time and money
- Collect the most statistically useful data
- Identify the effect of variable interactions
- Produce accurate statistical models

Technology
- Optimal (e.g. v-optimal, d-optimal)
 - Use your knowledge of the response and constraints
- Space filling (e.g. Latin hypercube)
 - Cover the input space efficiently
 - For when you’re not sure what response or constraints to expect
- Classical (e.g. central composite, full factorial)
 - Traditional approaches to design of experiments
Gasoline Application: Modelling

- Models of torque and exhaust temperature
Modelling

Benefits

- Statistical modelling captures the shape of responses and confidence levels
- Modelling tools help to identify bad data
- Models can be reused throughout the design process

Technology

- Multivariable polynomials, splines
- Growth models
- Radial basis functions
- User-defined models
Gasoline Application: Optimisation

Optimization Output

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>N</th>
<th>S</th>
<th>EXH</th>
<th>INT</th>
<th>BTG</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>1000</td>
<td>21.723</td>
<td>34.495</td>
<td>36.645</td>
<td>36.233</td>
<td>-235.666</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>1000</td>
<td>13.774</td>
<td>36.039</td>
<td>28.539</td>
<td>39.229</td>
<td>-172.465</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>1500</td>
<td>16.672</td>
<td>28.234</td>
<td>25.222</td>
<td>30.035</td>
<td>-114.722</td>
</tr>
<tr>
<td>4</td>
<td>0.3</td>
<td>2000</td>
<td>25.847</td>
<td>21.511</td>
<td>23.023</td>
<td>30.166</td>
<td>-65.734</td>
</tr>
<tr>
<td>5</td>
<td>0.6</td>
<td>2000</td>
<td>17.977</td>
<td>22.53</td>
<td>21.433</td>
<td>91.574</td>
<td>39.224</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>2500</td>
<td>17.081</td>
<td>12.082</td>
<td>14.894</td>
<td>118.898</td>
<td>-5.865</td>
</tr>
<tr>
<td>7</td>
<td>0.3</td>
<td>3000</td>
<td>34.842</td>
<td>16.828</td>
<td>21.744</td>
<td>38.811</td>
<td>-10.247</td>
</tr>
<tr>
<td>8</td>
<td>0.5</td>
<td>3000</td>
<td>25.621</td>
<td>17.098</td>
<td>16.81</td>
<td>92.542</td>
<td>3.79262</td>
</tr>
<tr>
<td>9</td>
<td>0.6</td>
<td>3500</td>
<td>33.623</td>
<td>47.888</td>
<td>9.521</td>
<td>112.61</td>
<td>4.8287E-7</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
<td>4000</td>
<td>50</td>
<td>47.257</td>
<td>25.843</td>
<td>32.864</td>
<td>1.858E-10</td>
</tr>
<tr>
<td>11</td>
<td>0.3</td>
<td>3500</td>
<td>33.124</td>
<td>38.753</td>
<td>-5</td>
<td>85.989</td>
<td>4.484E-7</td>
</tr>
<tr>
<td>12</td>
<td>0.7</td>
<td>4500</td>
<td>36.424</td>
<td>50.449</td>
<td>-5.449</td>
<td>130.314</td>
<td>2.945</td>
</tr>
<tr>
<td>13</td>
<td>0.3</td>
<td>5000</td>
<td>47.367</td>
<td>40.311</td>
<td>-2.502</td>
<td>27.808</td>
<td>2.274E-12</td>
</tr>
<tr>
<td>14</td>
<td>0.5</td>
<td>5000</td>
<td>48.155</td>
<td>42.739</td>
<td>-3.786</td>
<td>30.429</td>
<td>6.445E-6</td>
</tr>
<tr>
<td>15</td>
<td>0.4</td>
<td>2500</td>
<td>24.111</td>
<td>20.87</td>
<td>18.301</td>
<td>85.873</td>
<td>-35.621</td>
</tr>
</tbody>
</table>

Algorithm Statistics

<table>
<thead>
<tr>
<th>Iterations</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>FuncCount</td>
<td>200</td>
</tr>
<tr>
<td>stepsize</td>
<td>1</td>
</tr>
<tr>
<td>algorithm</td>
<td>medium...</td>
</tr>
<tr>
<td>firstorder</td>
<td>0.005...</td>
</tr>
<tr>
<td>generations</td>
<td>12</td>
</tr>
</tbody>
</table>

Objective Functions
Calibration Optimisation

Benefits
■ Move the table-filling process away from the test bed
■ Regenerate calibrations when objectives, constraints or strategies change… without additional testing
■ Explore trade-off possibilities interactively
■ Produce initial calibrations using engine simulation software, before hardware is available

Technology
■ Sophisticated optimisation routines for point-by-point, drive cycles
■ User-configurable objectives and constraints
■ Easy table filling from optimisation results
■ Scripting interface to Optimization Toolbox, GADS Toolbox
Gasoline Application: Results

- Tables of best spark timing, inlet cam timing, exhaust cam timing and torque
Diesel Application: Problem Statement

- 9.0 litre diesel engine with cooled EGR and variable geometry turbocharger
- Find best settings of injection timing, fuel quantity, EGR and turbo rack position (versus speed and torque)
- Objective is best brake specific fuel consumption
- Constraints are exhaust temperature, NOx and peak cylinder pressure
Diesel Application: Design of Experiments

- V-optimal design with 65 injection timing sweeps, constraints on inputs versus speed
Diesel Application: Modelling

- Models of torque, NOx, exhaust temperature and peak cylinder pressure
Diesel Application: Modelling

- Models can be exported to Simulink
Diesel Application: Optimisation

Optimization Output

<table>
<thead>
<tr>
<th>Iterations</th>
<th>funcCount</th>
<th>stepsize</th>
<th>algorithm</th>
<th>firstorderopt</th>
<th>message</th>
</tr>
</thead>
</table>
| 14 | 105 | 1 | medium-scale SQP | 1.3699e-005 | Optimization terminated: first-order optimality ...

Free Variable Values

- soi: -8
- basefuelmass: 152.885844571
- fuelpress: 158.121521877
- ecl: 0.7868335103
- bsfc: 1.04443121455

Objective Functions

- base
- fuelpress
- ecl
- bsfc
Diesel Application: Results

- Tables of best injection timing, fuel quantity, EGR and turbo rack position
Future Directions

- Producing ballpark calibrations using engine simulation
- Prototyping algorithms for engine control
- Validating and verifying ECU software and hardware
- Increasing test automation
Model-Based Calibration: Outline

- The concept
- Example applications today
 - Gasoline application for passenger cars
 - Diesel application for off-road
- Future directions
- This is of interest to engineers involved in
 - Calibration
 - Dynamometer testing
 - Engine control strategy design
 - ECU software and hardware validation
 - Vehicle simulation that includes powertrain
Acknowledgements

- Ian Noell
- Tanya Morton
- Paul Kerr-Delworth
- Russell Goyder
- Richard Alcock
- Tish Sheridan
- Jos Martin
- Richard Lang
- Jon Cherrie
- Pete Maloney
Questions???

- Paper in the proceedings
- Stop by the booth for a demonstration
- E-mail: david.sampson@mathworks.co.uk