Model-Based Engine Calibration

International Automotive Conference
15 June 2004

Dr David Sampson
The MathWorks
Model-Based Calibration: Outline

- The concept
- Example applications today
 - Gasoline application for passenger cars
 - Diesel application for off-road
- Future directions
- This is of interest to engineers involved in
 - Calibration
 - Dynamometer testing
 - Engine control strategy design
 - ECU software and hardware validation
 - Vehicle simulation that includes powertrain
Setting The Scene

Who is driving engine development?
- Customers: better performance, better economy
- Regulators: lower emissions
- Hardware designers: more controllers, fewer compromises
- Competition: lower cost of development

The result is…
- Tougher performance targets
- More complexity
- More pressure to reduce development costs
Calibration
(The Narrow Definition)

- Calibration software is for editing values in lookup tables
Model-Based Calibration

Experiment Design → Data Collection → Data Modelling

Calibration → Implementation
Gasoline Application: Problem Statement

- 2.2 litre gasoline engine with dual independent variable valve timing
- Find best settings of spark timing, inlet cam timing and exhaust cam timing (versus speed and load)
- Objective is best brake specific fuel consumption
- Constraint is exhaust temperature
Gasoline Application: Design of Experiments

- Space-filling design with 253 spark sweeps
Design of Experiments

Benefits

- Significant reductions in experimental time and money
- Collect the most statistically useful data
- Identify the effect of variable interactions
- Produce accurate statistical models

Technology

- Optimal (e.g. v-optimal, d-optimal)
 - Use your knowledge of the response and constraints
- Space filling (e.g. Latin hypercube)
 - Cover the input space efficiently
 - For when you’re not sure what response or constraints to expect
- Classical (e.g. central composite, full factorial)
 - Traditional approaches to design of experiments
Gasoline Application: Modelling

- Models of torque and exhaust temperature
Modelling

Benefits
- Statistical modelling captures the shape of responses and confidence levels
- Modelling tools help to identify bad data
- Models can be reused throughout the design process

Technology
- Multivariable polynomials, splines
- Growth models
- Radial basis functions
- User-defined models
Gasoline Application: Optimisation

Optimization Output

<table>
<thead>
<tr>
<th>L</th>
<th>N</th>
<th>S</th>
<th>EXH</th>
<th>INT</th>
<th>BTG</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>1000</td>
<td>21.723</td>
<td>34.495</td>
<td>58.645</td>
<td>36.233</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>1000</td>
<td>13.774</td>
<td>36.589</td>
<td>28.539</td>
<td>28.229</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>1500</td>
<td>16.672</td>
<td>28.234</td>
<td>25.222</td>
<td>30.395</td>
</tr>
<tr>
<td>4</td>
<td>0.3</td>
<td>2000</td>
<td>25.547</td>
<td>21.111</td>
<td>23.023</td>
<td>30.166</td>
</tr>
<tr>
<td>5</td>
<td>0.3</td>
<td>2000</td>
<td>17.977</td>
<td>22.333</td>
<td>31.433</td>
<td>91.746</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>2000</td>
<td>17.581</td>
<td>12.082</td>
<td>14.894</td>
<td>118.896</td>
</tr>
<tr>
<td>7</td>
<td>0.3</td>
<td>3000</td>
<td>34.842</td>
<td>16.528</td>
<td>21.744</td>
<td>39.811</td>
</tr>
<tr>
<td>8</td>
<td>0.5</td>
<td>3000</td>
<td>25.821</td>
<td>17.098</td>
<td>19.1</td>
<td>92.542</td>
</tr>
<tr>
<td>9</td>
<td>0.6</td>
<td>3500</td>
<td>33.623</td>
<td>47.088</td>
<td>9.521</td>
<td>112.61</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>4000</td>
<td>50</td>
<td>47.257</td>
<td>23.643</td>
<td>32.664</td>
</tr>
<tr>
<td>11</td>
<td>0.5</td>
<td>4000</td>
<td>33.104</td>
<td>38.755</td>
<td>-5</td>
<td>55.899</td>
</tr>
<tr>
<td>12</td>
<td>0.7</td>
<td>4500</td>
<td>36.642</td>
<td>50.449</td>
<td>-5.449</td>
<td>130.914</td>
</tr>
<tr>
<td>13</td>
<td>0.3</td>
<td>5000</td>
<td>47.367</td>
<td>40.911</td>
<td>-2.592</td>
<td>27.808</td>
</tr>
<tr>
<td>14</td>
<td>0.5</td>
<td>5000</td>
<td>48.155</td>
<td>42.733</td>
<td>-3.706</td>
<td>30.429</td>
</tr>
<tr>
<td>15</td>
<td>0.4</td>
<td>2500</td>
<td>24.111</td>
<td>20.87</td>
<td>18.301</td>
<td>85.873</td>
</tr>
</tbody>
</table>

Algorithm Statistics

- Iterations: 26
- FuncCount: 200
- stepsize: 1
- algorithm: medium
- 1storder: 0.005
- 2ndorder:
- message: Optimisation

Objective Functions

- BTQ
- S
- EXH
- INT

- Graphs showing trends in variables and functions over different values of S, EXH, and INT.
Calibration Optimisation

Benefits
- Move the table-filling process away from the test bed
- Regenerate calibrations when objectives, constraints or strategies change… without additional testing
- Explore trade-off possibilities interactively
- Produce initial calibrations using engine simulation software, before hardware is available

Technology
- Sophisticated optimisation routines for point-by-point, drive cycles
- User-configurable objectives and constraints
- Easy table filling from optimisation results
- Scripting interface to Optimization Toolbox, GADS Toolbox
Gasoline Application: Results

- Tables of best spark timing, inlet cam timing, exhaust cam timing and torque
Diesel Application: Problem Statement

- 9.0 litre diesel engine with cooled EGR and variable geometry turbocharger
- Find best settings of injection timing, fuel quantity, EGR and turbo rack position (versus speed and torque)
- Objective is best brake specific fuel consumption
- Constraints are exhaust temperature, NOx and peak cylinder pressure
Diesel Application: Design of Experiments

- V-optimal design with 65 injection timing sweeps, constraints on inputs versus speed
Diesel Application: Modelling

- Models of torque, NOx, exhaust temperature and peak cylinder pressure
Diesel Application: Modelling

- Models can be exported to Simulink
Diesel Application: Optimisation

Optimization Output

<table>
<thead>
<tr>
<th>1</th>
<th>2200</th>
<th>1253</th>
<th>26.5</th>
<th>-9</th>
<th>152.884</th>
<th>168.102</th>
<th>0.769</th>
<th>1.044</th>
<th>207.764</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2200</td>
<td>947</td>
<td>27.75</td>
<td>-9</td>
<td>113.322</td>
<td>159.114</td>
<td>0.814</td>
<td>3.681</td>
<td>205.218</td>
</tr>
<tr>
<td>3</td>
<td>2200</td>
<td>652</td>
<td>30</td>
<td>-9</td>
<td>78.184</td>
<td>150.076</td>
<td>0.767</td>
<td>5</td>
<td>212.841</td>
</tr>
<tr>
<td>4</td>
<td>2200</td>
<td>126</td>
<td>0</td>
<td>-9</td>
<td>24.736</td>
<td>150.865</td>
<td>0.732</td>
<td>2.957</td>
<td>387.644</td>
</tr>
<tr>
<td>5</td>
<td>1600</td>
<td>1580</td>
<td>22</td>
<td>-3.02</td>
<td>200.525</td>
<td>110.02</td>
<td>0.42</td>
<td>0.48</td>
<td>225.223</td>
</tr>
<tr>
<td>6</td>
<td>1600</td>
<td>1183</td>
<td>22.5</td>
<td>-3</td>
<td>148.677</td>
<td>110</td>
<td>0.4</td>
<td>0.5</td>
<td>219.759</td>
</tr>
<tr>
<td>7</td>
<td>1600</td>
<td>775</td>
<td>23</td>
<td>-3</td>
<td>95.926</td>
<td>99.959</td>
<td>0.4</td>
<td>0.865</td>
<td>212.332</td>
</tr>
</tbody>
</table>

Algorithm Statistics

<table>
<thead>
<tr>
<th>Iterations</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>FuncCount</td>
<td>105</td>
</tr>
<tr>
<td>Stepsize</td>
<td>1</td>
</tr>
<tr>
<td>Algorithm</td>
<td>medium-scale SQ...</td>
</tr>
<tr>
<td>Solver</td>
<td>1.3593e-005</td>
</tr>
</tbody>
</table>
| Option | Optimization termin...

Free Variable Values

<table>
<thead>
<tr>
<th>soi</th>
<th>-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>basefuelmass</td>
<td>152.6883894521</td>
</tr>
<tr>
<td>fuelpress</td>
<td>188.101521877</td>
</tr>
<tr>
<td>egrift</td>
<td>1.06443121425</td>
</tr>
</tbody>
</table>

Objective Functions

- bhp
- basefuelmass
- fuelpress
-egrift
Diesel Application: Results

- Tables of best injection timing, fuel quantity, EGR and turbo rack position
Future Directions

- Producing ballpark calibrations using engine simulation
- Prototyping algorithms for engine control
- Validating and verifying ECU software and hardware
- Increasing test automation
Model-Based Calibration: Outline

■ The concept
■ Example applications today
 ● Gasoline application for passenger cars
 ● Diesel application for off-road
■ Future directions
■ This is of interest to engineers involved in
 ● Calibration
 ● Dynamometer testing
 ● Engine control strategy design
 ● ECU software and hardware validation
 ● Vehicle simulation that includes powertrain
Acknowledgements

- Ian Noell
- Tanya Morton
- Paul Kerr-Delworth
- Russell Goyder
- Richard Alcock
- Tish Sheridan
- Jos Martin
- Richard Lang
- Jon Cherrie
- Pete Maloney
Questions???

- Paper in the proceedings
- Stop by the booth for a demonstration
- E-mail: david.sampson@mathworks.co.uk