DECOMSYS::SIMTOOLS

V Model

- Requirements
- Functional Model
- Application Code
- Test
- Validation
- Verification

DECOMSYS
V and A Model

- Requirements
- Functional Model
- Application Code
- Test
- Validation
- Verification

A Model

- Architecture-Allocated Functional Model (AAFM)
- Virtual Prototype (VP)
- Middleware Code

DECOMSYS::SIMSYSTEM
DECOMSYS::DESIGNER
DECOMSYS::GENERATOR, DECOMSYS::OILEXPORTER
DECOMSYS::SIMTARGET
DECOMSYS::NODE
AAFM Simulation

Functional Application Task Simulation in Simulink/Stateflow

Time-Triggered Operating System Simulation
Simple FT-Com Simulation

Generic Communication without Time Delays

AM

Configuration Simulation Code Generation

FlexRay

Pedal ECU

Control ECU

Wheel ECU

0 100 200 300 400 500 600 700 800 900 1000us
Virtual Prototype

- FlexRay
- Pedal ECU
- Control ECU
- Wheel ECU

0 100 200 300 400 500 600 700 800 900 1000us

VP Simulation

- Functional Application Task Simulation in Simulink/Stateflow
- Time-Triggered Operating System Simulation
- FT-Com Simulation

- FlexRay TDMA+Schedule
- FTCOM Configuration
SIMSYSTEM Building Blocks

- **Cluster**: connection to XCDEF file
- **Signal Connectors**: signal transmission
- **Tasks**: time-triggered functional model
- **Hosts**: hosting Microprocessors

AAFM Example
Communication Fault Injection

Functional Application Task Simulation in Simulink/Stateflow

Time-Triggered Operating System Simulation

FT-Com Simulation

Simulation-Based Communication Fault Injection

How the application reacts on communication faults?

- Simulation based fault injection
 - Spontaneous injection of communication faults during simulation
 - Uses Graphical User Interfaces
 - Fault scenario modelling in Matlab/Simulink
 - Modelling interfaces to FlexRay simulation core
Source Code Generation

Rational
- Application code generation for each Host
- Task bodies generated from SIMSYSTEM Task blocks
- Interfacing with FTCom source code and OIL task calls
- Supporting Rapid Prototyping and HIL
- Supporting prediction code generation
- Upload of binary to target hardware
- Start and stop the application on target hardware

Source Code Generation

Supported code generators
- Real-Time Workshop
 - SIMTARGET<...,Linux>
 - DECOMSYS Prototyping Platform with Linux based OS
 - Customer specific platforms
 - dSPACE RTI FlexRay Blockset Integration
- Real-Time Workshop Embedded Coder
 - SIMTARGET<...,TimeCore>
 - Compatible with TimeCore production software
- Target Link
 - SIMTARGET planned on customer request
Source Code Generation Example

Architectural Model (AM)

DESIGNER Generator OILEXPORTER

Virtual Prototype (VP)

TimeCore

Architectural Model (AM)

DESIGNER Generator OILEXPORTER

Virtual Prototype (VP)

Customer ECU Hardware

Source Code Generation Example

FlexRay Restbus-Simulation

Physical Process

ECU

TT-Os

I/O CAN CAN I/O CAN

FTCom

FlexRay

Task1

Task2

Supplier 1

Supplier 2

Supplier 3

Supplier 4
MB FlexRay Development

Summary

- Designing multi ECU models
- Critical role of communication subsystem
- Virtual prototyping including communication
- Model based fault injection and simulation
- Cost efficient prototypes
- Early identification of erroneous distributed system behaviour
- Communication system evaluation and training
- Code generation interfaces
- Easy configuration of rest system simulation

Thank you for your attention!

© DECOMSYS 2004